Pseudoscalar mesons at finite temperature in a separable Dyson-Schwinger model*

D. Horvatić^{*a*}, D. Klabučar^{*a*}, D. Blaschke^{*b,c,d*}, A. E. Radzhabov^{*c*}

*Hot Matter and Gauge Field Theories, Rab, Croatia, 2007.

^a Theoretical Physics Department, University of Zagreb, Croatia ^bUniversity of Rostock, Germany ^c JINR Dubna, Russia ^dUniversity of Wroclaw, Poland

September 1, 2007

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Dyson-Schwinger approach to quark-hadron physics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Separable model at T = 0
- Separable model at $T \neq 0$
- Results for pseudoscalar mesons at T = 0
- Results for pseudoscalar mesons at $T \neq 0$
- Summary

Gap and BS equations in ladder truncation

► Euclidean space: $\{\gamma_{\mu}, \gamma_{\nu}\} = 2\delta_{\mu\nu}, \ \gamma^{\dagger}_{\mu} = \gamma_{\mu}, \ a \cdot b = \sum_{i=1}^{4} a_i b_i$

- P is the total momentum
- meson mass is identified from $\lambda(P^2 = -M^2) = 1$
- ► $D_{\mu\nu}^{\text{eff}}(k)$ an "effective gluon propagator" modeled !

From the gap and BS equations ...

• solutions of the gap equation \rightarrow the <u>dressed</u> quark mass function

$$m_f(p^2) = \frac{B_f(p^2)}{A_f(p^2)}$$

▶ propagator solutions $A_f(p^2)$ and $B_f(p^2)$ pertain to confined quarks if

$$m_f^2(p^2) \neq -p^2$$
 for real p^2

► The BS solutions $\Gamma_{f\bar{f}'}$ enable the calculation of the properties of $q\bar{q}$ bound states, such as the decay constants of pseudoscalar mesons:

$$f_{PS} P_{\mu} = \langle 0 | \bar{q} \ \frac{\lambda^{PS}}{2} \gamma_{\mu} \gamma_{5} q | \Phi_{PS}(P) \rangle$$

$$\longrightarrow f_{\pi} P_{\mu} = N_{c} \operatorname{tr}_{s} \int \frac{d^{4}q}{(2\pi)^{4}} \gamma_{5} \gamma_{\mu} S(q+P/2) \Gamma_{\pi}(q;P) S(q-P/2)$$

Separable model

• To simplify calculations, take the separable form for $D_{\mu\nu}^{\text{eff}}$:

$$D_{\mu\nu}^{\text{eff}}(p-q) \to \delta_{\mu\nu} D(p^2, q^2, p \cdot q)$$
$$D(p^2, q^2, p \cdot q) = D_0 f_0(p^2) f_0(q^2) + D_1 f_1(p^2)(p \cdot q) f_1(q^2)$$

• two strength parameters D_0, D_1 , and corresponding form factors $f_i(p^2)$. In the separable model, gap equation yields

$$B_f(p^2) = \tilde{m}_f + \frac{16}{3} \int \frac{d^4q}{(2\pi)^4} D(p^2, q^2, p \cdot q) \frac{B_f(q^2)}{q^2 A_f^2(q^2) + B_f^2(q^2)}$$
$$A_f(p^2) - 1] p^2 = \frac{8}{3} \int \frac{d^4q}{(2\pi)^4} D(p^2, q^2, p \cdot q) \frac{(p \cdot q)A_f(q^2)}{q^2 A_f^2(q^2) + B_f^2(q^2)}.$$

► This gives B_f(p²) = m̃_f + b_f f₀(p²) and A_f(p²) = 1 + a_f f₁(p²), reducing to nonlinear equations for constants b_f and a_f.

A simple choice for 'interaction form factors' of the separable model:

•
$$f_0(p^2) = \exp(-p^2/\Lambda_0^2)$$

- f₁(p²) = [1 + exp(-p₀²/Λ₁²)]/[1 + exp((p² − p₀²))/Λ₁²]
 gives good description of pseudoscalar properties if the
 interaction is strong enough for realistic DChSB, when
 m_{u,d}(p² ~ small) ~ the typical constituent quark mass scale
 ~ m_ρ/2 ~ m_N/3.
- Another simplification: for the separable interaction, the solution for the pseudoscalar BS amplitude reduces to just two terms:

$$\Gamma_{PS}(q;P) = \gamma_5 \left[i E_{PS}(P^2) + \mathscr{P}F_{PS}(P^2) \right] f_0(q^2)$$

Extension to $T \neq 0$

- At $T \neq 0$, the quark 4-momentum $p \longrightarrow p_n = (\omega_n, \vec{p})$, where $\omega_n = (2n+1)\pi T$ are the discrete ($n = 0, \pm 1, \pm 2, \pm 3, ...$) Matsubara frequencies, so that $p_n^2 = \omega_n^2 + \vec{p}^{2}$.
- Gap equation solution for the dressed quark propagator

$$S_f(p_n, T) = [i\vec{\gamma} \cdot \vec{p} A_f(p_n^2, T) + i\gamma_4\omega_n C_f(p_n^2, T) + B_f(p_n^2, T)]^{-1}$$

$$= \frac{-i\vec{\gamma}\cdot\vec{p}\;A_f(p_n^2,T) - i\gamma_4\omega_n\;C_f(p_n^2,T) + B_f(p_n^2,T)}{\vec{p}^{\,2}\,A_f^2(p_n^2,T) + \omega_n^2\,C_f^2(p_n^2,T) + B_f^2(p_n^2,T)}$$

► There are now three amplitudes due to the loss of O(4) symmetry, and at sufficiently high T ≥ T_d denominator CAN vanish. → For T ≥ T_d quarks can be deconfined!

Extension to $T \neq 0$

► The solutions have the form
$$B_f = \tilde{m}_f + b_f(T)f_0(p_n^2)$$
,
 $A_f = 1 + a_f(T)f_1(p_n^2)$, and $C_f = 1 + c_f(T)f_1(p_n^2)$

$$\begin{split} a_f(T) &= \frac{8D_1}{9} T \sum_n \int \frac{d^3p}{(2\pi)^3} f_1(p_n^2) \, \vec{p}^2 \left[1 + a_f(T) f_1(p_n^2) \right] d_f^{-1}(p_n^2, T) \\ c_f(T) &= \frac{8D_1}{3} T \sum_n \int \frac{d^3p}{(2\pi)^3} f_1(p_n^2) \, \omega_n^2 \left[1 + c_f(T) f_1(p_n^2) \right] d_f^{-1}(p_n^2, T) \\ b_f(T) &= \frac{16D_0}{3} T \sum_n \int \frac{d^3p}{(2\pi)^3} f_0(p_n^2) \left[\tilde{m}_f + b_f(T) f_0(p_n^2) \right] d_f^{-1}(p_n^2, T) \end{split}$$

 \blacktriangleright where $d_f(p_n^2,T)$ is given by

$$d_f(p_n^2, T) = \vec{p}^2 A_f^2(p_n^2, T) + \omega_n^2 C_f^2(p_n^2, T) + B_f^2(p_n^2, T)$$

Matsubara sums

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Matsubara sums

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Matsubara sums

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Chiral symmetry restoration at $T = T_{Ch}$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

Chiral symmetry restoration at $T = T_{Ch}$

◆□> ◆□> ◆三> ◆三> 三三 のへぐ

Violation of O(4) symmetry with T

Model results at T = 0

Model parameter values reproducing experimental data:

•
$$\widetilde{m}_{u,d} = 5.5 \text{ MeV}, \Lambda_0 = 758 \text{ MeV}, \Lambda_1 = 961 \text{ MeV},$$

 $p_0 = 600 \text{ MeV}, D_0 \Lambda_0^2 = 219, D_1 \Lambda_1^4 = 40 \text{ (fixed by fitting } M_{\pi},$
 $f_{\pi}, M_{\rho}, g_{\rho\pi^+\pi^-}, g_{\rho e^+e^-} \rightarrow \text{predictions}$
 $a_{u,d} = 0.672, b_{u,d} = 660 \text{ MeV}, \text{ i.e., } m_{u,d}(p^2), \langle \bar{u}u \rangle \text{)}$
• $\widetilde{m}_s = 115 \text{ MeV} \text{ (fixed by fitting } M_K \rightarrow \text{predictions}$
 $a_s = 0.657, b_s = 998 \text{ MeV}, \text{ i.e., } m_s(p^2), \langle \bar{s}s \rangle, M_{s\bar{s}}, f_K, f_{s\bar{s}} \text{)}$

Summary of results (all in GeV) for q = u, d, s and pseudoscalar mesons without the influence of gluon anomaly:

PS	M_{PS}	f_{PS}	$-\langle \bar{q}q \rangle_0^{1/3}$	$m_q(0)$
π	0.140	0.092	0.217	0.398
K	0.495	0.110		
$s\bar{s}$	0.685	0.119		0.672

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Model results at T = 0

GMOR

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < ○

$\eta - \eta'$ complex

$$\begin{split} M_{\eta}^{2} &= \frac{1}{2} \left[\begin{array}{cc} M_{\eta_{NS}}^{2} + M_{\eta_{S}}^{2} - \sqrt{(M_{\eta_{NS}}^{2} - M_{\eta_{S}}^{2})^{2} + 8\beta^{2}X^{2}} \right] \\ &= \frac{1}{2} \left[M_{\pi}^{2} + M_{s\bar{s}}^{2} + \beta(2 + X^{2}) - \sqrt{(M_{\pi}^{2} + 2\beta - M_{s\bar{s}}^{2} - \beta X^{2})^{2} + 8\beta^{2}X^{2}} \right] \\ M_{\eta'}^{2} &= \frac{1}{2} \left[\begin{array}{c} M_{\eta_{NS}}^{2} + M_{\eta_{S}}^{2} + \sqrt{(M_{\eta_{NS}}^{2} - M_{\eta_{S}}^{2})^{2} + 8\beta^{2}X^{2}} \right] \\ &= \frac{1}{2} \left[M_{\pi}^{2} + M_{s\bar{s}}^{2} + \beta(2 + X^{2}) + \sqrt{(M_{\pi}^{2} + 2\beta - M_{s\bar{s}}^{2} - \beta X^{2})^{2} + 8\beta^{2}X^{2}} \right] \end{split}$$

$$X = f_{\pi}/f_{s\bar{s}}$$

$$\beta (2 + X^2) = m_{\eta}^2 + m_{\eta'}^2 - 2m_K^2 = \frac{2N_f}{f_{\pi}^2}\chi$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Results on $\eta - \eta'$ complex at T = 0

	β_{fit}	$\beta_{\text{latt.}}$	Exp.
θ	-12.22°	-13.92°	
M_{η}	548.9	543.1	547.75
$M_{\eta'}$	958.5	932.5	957.78
X	0.772	0.772	
3eta	0.845	0.781	

- masses are in units of MeV, 3β in units of GeV² and the mixing angles are dimensionless.
- ▶ $\beta_{\text{latt.}}$ was obtained from $\chi(T = 0) = (175.7 \text{ MeV})^4$ using Witten-Veneziano relation.

Model results at $T \neq 0$

▶ T-dependence of the masses of light mesons: $\pi, K, s\bar{s}, \sigma$

Model results at $T \neq 0$

• T-dependence of pseudoscalar decay constants f_P

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Model results at $T\neq 0$

•
$$m_{s\bar{s}}^2 pprox 2m_K^2 - m_\pi^2$$
 due to GMOR

Topological susceptibility

YM - solid curve, SU(3) quenched - dashed, $N_f = 4$ QCD - dotted

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

$X = f_{\pi}/f_{s\bar{s}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $T_{\chi} = 2/3T_{\rm Ch}$, YM susceptibility

(日)、

э

 $T_{\chi} = 0.836 T_{\rm Ch}$, YM susceptibility

 $T_{\chi} = T_{\rm Ch}$, YM susceptibility

◆□> ◆□> ◆三> ◆三> ・三 ・ のへ()・

 $T_{\chi} = 1.17 T_{\rm Ch} = 150 \, {\rm MeV}$, YM susceptibility

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Animation for range of T_{χ}

Movie

PS nonet at $T \neq 0$, SU(3) quenched susceptibility

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

PS nonet at $T \neq 0$, $N_f = 4$ QCD susceptibility

◆□> ◆□> ◆三> ◆三> ・三 ・ のへ()・

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

▲ロト ▲舂 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()~.

Order parameters without PL

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

Summary

- Sketched Dyson-Schwinger approach to quark-hadron physics & a convenient concrete model
- Results for dressed quarks and pseudoscalar mesons at T = 0
- \blacktriangleright Results for dressed quarks and pseudoscalar mesons at $T \neq 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ