Serre A_{∞}-functors

Oleksandr Manzyuk

joint work with Volodymyr Lyubashenko
math.CT/0701165

0. Notation
1. Preliminaries on A_{∞}-categories
2. Serre functors
3. Serre A_{∞}-functors

0. Notation

- \mathbb{k} denotes a (ground) commutative ring
- \mathbb{k}-linear $=$ enriched in \mathbb{k}-mod
- graded $=\mathbb{Z}$-graded
- $\mathrm{C}_{\mathbb{k}}=$ the category of complexes of \mathbb{k}-modules
- A differential graded (dg) category is a category enriched in $\mathrm{C}_{\mathbb{k}}$.

In particular, since $C_{\mathbb{k}}$ is a closed monoidal category, it gives rise to a category \underline{C}_{k} enriched in C_{k}, i.e., to a dg category.

- We use geometric notation for composition:

$$
\xrightarrow{f} \xrightarrow{g}=\xrightarrow{f g}
$$

1. Preliminaries on A_{∞}-categories A_{∞}-categories

Definition. An A_{∞}-category \mathcal{A} consists of

- a set of objects Ob \mathcal{A}
- for each $X, Y \in \operatorname{Ob} \mathcal{A}$, a graded \mathbb{k}-module $\mathcal{A}(X, Y)$
- for each $n \geqslant 1$ and $X_{0}, \ldots, X_{n} \in \operatorname{Ob} \mathcal{A}$, a \mathbb{k}-linear map

$$
m_{n}: \mathcal{A}\left(X_{0}, X_{1}\right) \otimes \cdots \otimes \mathcal{A}\left(X_{n-1}, X_{n}\right) \rightarrow \mathcal{A}\left(X_{0}, X_{n}\right)
$$

of degree $2-n$,
satisfying the equations

$$
\sum_{p+k+q=n}(-1)^{p k+q}\left(1^{\otimes p} \otimes m_{k} \otimes 1^{\otimes q}\right) m_{p+1+q}=0, \quad n \geqslant 1 .
$$

($n=1$) $\quad m_{1}^{2}=0$
$(n=2) \quad m_{2} m_{1}=\left(m_{1} \otimes 1+1 \otimes m_{1}\right) m_{2}$
$(n=3) \quad\left(m_{2} \otimes 1\right) m_{2}-\left(1 \otimes m_{2}\right) m_{2}$

$$
=m_{3} m_{1}+\left(m_{1} \otimes 1 \otimes 1+1 \otimes m_{1} \otimes 1+1 \otimes 1 \otimes m_{1}\right) m_{3}
$$

Example. A dg category can be viewed as an A_{∞}-category in which $m_{n}=0$ for $n \geqslant 3$.

A_{∞}-functors

Definition. An A_{∞}-functor $f: \mathcal{A} \rightarrow \mathcal{B}$ consists of

- a function $\operatorname{Ob} f: \operatorname{Ob} \mathcal{A} \rightarrow \mathrm{Ob} \mathcal{B}, X \mapsto X f$
- for each $n \geqslant 1$ and $X_{0}, \ldots, X_{n} \in \operatorname{Ob} \mathcal{A}$, a \mathbb{k}-linear map

$$
f_{n}: \mathcal{A}\left(X_{0}, X_{1}\right) \otimes \cdots \otimes \mathcal{A}\left(X_{n-1}, X_{n}\right) \rightarrow \mathcal{B}\left(X_{0} f, X_{n} f\right)
$$

of degree $1-n$,
satisfying the equations

$$
\begin{aligned}
\sum_{i_{1}+\cdots+i_{l}=n}^{l>0}(-1)^{\sigma}\left(f_{i_{1}}\right. & \left.\otimes \cdots \otimes f_{i_{l}}\right) m_{l} \\
& =\sum_{p+k+q=n}(-1)^{p k+q}\left(1^{\otimes p} \otimes m_{k} \otimes 1^{\otimes q}\right) f_{p+1+q}, \quad n \geqslant 1,
\end{aligned}
$$

where $\sigma=\left(i_{2}-1\right)+2\left(i_{3}-1\right)+\cdots+(l-1)\left(i_{l}-1\right)$.
$(n=1) \quad f_{1} m_{1}=m_{1} f_{1}$
$(n=2) \quad m_{2} f_{1}-\left(f_{1} \otimes f_{1}\right) m_{2}=f_{2} m_{1}+\left(m_{1} \otimes 1+1 \otimes m_{1}\right) f_{2}$

Example. A dg functor can be viewed as an A_{∞}-functor with $f_{n}=0$ for $n \geqslant 2$.

Graded quivers

Definition. A graded quiver \mathcal{A} consists of

- a set of objects $\operatorname{Ob} \mathcal{A}$
- for each $X, Y \in \operatorname{Ob} \mathcal{A}$, a graded \mathbb{k}-module $\mathcal{A}(X, Y)$.

A morphism $f: \mathcal{A} \rightarrow \mathcal{B}$ of graded quivers consists of

- a function $\operatorname{Ob} f: \operatorname{Ob} \mathcal{A} \rightarrow \mathrm{Ob} \mathcal{B}, X \mapsto X f$
- for each $X, Y \in \operatorname{Ob} \mathcal{A}$, a \mathbb{k}-linear map

$$
f=f_{X, Y}: \mathcal{A}(X, Y) \rightarrow \mathcal{B}(X f, Y f)
$$

of degree 0 .

Let \mathscr{Q} denote the category of graded quivers. It is symmetric monoidal with tensor product $(\mathcal{A}, \mathcal{B}) \mapsto \mathcal{A} \boxtimes \mathcal{B}$ given by

$$
\begin{aligned}
\operatorname{Ob} \mathcal{A} \boxtimes \mathcal{B} & =\mathrm{Ob} \mathcal{A} \times \mathrm{Ob} \mathcal{B}, \\
(\mathcal{A} \boxtimes \mathcal{B})((X, U),(Y, V)) & =\mathcal{A}(X, Y) \otimes \mathcal{B}(U, V),
\end{aligned}
$$

$(X, Y \in \operatorname{Ob} \mathcal{A}, U, V \in \operatorname{Ob} \mathcal{B})$. The unit object is the graded quiver $\mathbb{1}$ with

$$
\operatorname{Ob} \mathbb{1}=\{*\}, \quad \mathbb{1}(*, *)=\mathbb{k} .
$$

Graded quivers with a fixed set of objects

For a set S, denote by \mathscr{Q} / S the fibre of the functor Ob: $\mathscr{Q} \rightarrow$ Set over S, i.e., the subcategory of \mathscr{Q} whose objects are graded quivers with the set of objects S and whose morphisms are morphisms of graded quivers acting as the identity on objects.
\mathscr{Q} / S is a monoidal category with tensor product $(\mathcal{A}, \mathcal{B}) \mapsto \mathcal{A} \otimes \mathcal{B}$ given by

$$
(\mathcal{A} \otimes \mathcal{B})(X, Z)=\bigoplus_{Y \in S} \mathcal{A}(X, Y) \otimes \mathcal{B}(Y, Z), \quad X, Z \in S
$$

The unit object is the discrete quiver $\mathbb{k} S$ given by

$$
\mathrm{Ob} \mathbb{k} S=S, \quad \mathbb{k} S(X, Y)=\left\{\begin{array}{ll}
\mathbb{k} & \text { if } X=Y, \\
0 & \text { if } X \neq Y,
\end{array} \quad X, Y \in S .\right.
$$

Cocategories

Definition. An augmented graded cocategory is a graded quiver \mathcal{C} equipped with the structure of an augmented counital coassociative coalgebra in the monoidal category $\mathscr{Q} / \mathrm{ObC}$. Therefore, \mathcal{C} comes with

- a comultiplication $\Delta: \mathcal{C} \rightarrow \mathcal{C} \otimes \mathcal{C}$
- a counit $\varepsilon: \mathcal{C} \rightarrow \mathbb{k} O b \mathcal{C}$
- an augmentation $\eta: \mathbb{k} \mathrm{Ob} \mathcal{C} \rightarrow \mathcal{C}$
which are morphisms in $\mathscr{Q} / \mathrm{Ob} \mathcal{C}$ satisfying the usual axioms.
A morphism of augmented graded cocategories is a morphism of graded quivers that preserves the comultiplication, counit, and augmentation.

The category of augmented graded cocategories inherits the tensor product \boxtimes from \mathscr{Q}.

Main example: tensor cocategory of a quiver

Let \mathcal{A} be a graded quiver. Denote

$$
T^{n} \mathcal{A}=\mathcal{A}^{\otimes n}=\underbrace{\mathcal{A} \otimes \cdots \otimes \mathcal{A}}_{n \text { times }}(\text { tensor product in } \mathscr{Q} / \operatorname{Ob} \mathcal{A}) .
$$

The graded quiver

$$
T \mathcal{A}=\bigoplus_{n=0}^{\infty} T^{n} \mathcal{A}
$$

equipped with the cut comultiplication

$$
\Delta_{0}: h_{1} \otimes \cdots \otimes h_{n} \mapsto \sum_{k=0}^{n} h_{1} \otimes \cdots \otimes h_{k} \bigotimes h_{k+1} \otimes \cdots \otimes h_{n}
$$

the counit

$$
\varepsilon=\operatorname{pr}_{0}: T \mathcal{A} \rightarrow T^{0} \mathcal{A}=\mathbb{k} \operatorname{Ob} \mathcal{A},
$$

and the augmentation

$$
\eta=\mathrm{in}_{0}: \mathbb{k} \operatorname{Ob} \mathcal{A}=T^{0} \mathcal{A} \hookrightarrow T \mathcal{A}
$$

is an augmented graded cocategory.

Cocategory approach to A_{∞}-categories

For a graded quiver \mathcal{A}, denote by $s \mathcal{A}$ its suspension:

$$
\operatorname{Ob} s \mathcal{A}=\operatorname{Ob} \mathcal{A}, \quad(s \mathcal{A}(X, Y))^{d}=\mathcal{A}(X, Y)^{d+1}, \quad X, Y \in \operatorname{Ob} \mathcal{A} .
$$

Let $s: \mathcal{A} \rightarrow s \mathcal{A}$ denote the 'identity' map of degree -1 .
Proposition (folklore). There is a bijection between structures $\left(m_{n}\right)_{n \geqslant 1}$ of an A_{∞}-category on a graded quiver \mathcal{A} and differentials $b: T s \mathcal{A} \rightarrow T s \mathcal{A}$ of degree 1 such that ($T s \mathcal{A}, \Delta_{0}, \operatorname{pr}_{0}, \mathrm{in}_{0}, b$) is an augmented differential graded cocategory, i.e.,

$$
b^{2}=0, \quad b \Delta_{0}=\Delta_{0}(b \otimes 1+1 \otimes b), \quad b \operatorname{pr}_{0}=0, \quad \mathrm{in}_{0} b=0 .
$$

The bijection is given by the formulas

$$
\begin{aligned}
m_{n} & =\left[\mathcal{A}^{\otimes n} \xrightarrow{s^{\otimes n}}(s \mathcal{A})^{\otimes n} \xrightarrow{b_{n}} s \mathcal{A} \xrightarrow{s^{-1}} \mathcal{A}\right], \\
b_{n} & =\left[(s \mathcal{A})^{\otimes n} \stackrel{\mathrm{in}_{n}}{\longrightarrow} T s \mathcal{A} \xrightarrow{b} T s \mathcal{A} \xrightarrow{\mathrm{pr}_{1}} s \mathcal{A}\right], \\
b_{n m} & =\sum_{\substack{p+k+q=n \\
p+1+q=m}} 1^{\otimes p} \otimes b_{k} \otimes 1^{\otimes q}: T^{n} s \mathcal{A} \rightarrow T^{m} s \mathcal{A} .
\end{aligned}
$$

We may think of A_{∞}-categories as of augmented dg cocategories of particular form. Then A_{∞}-functors $f: \mathcal{A} \rightarrow \mathcal{B}$ correspond precisely to morphisms

$$
(T s \mathcal{A}, b) \rightarrow(T s \mathcal{B}, b)
$$

of augmented dg cocategories.
The advantage is that we can easily define A_{∞}-functors of many arguments!

A short reminder about multicategories

A multicategory is just like a category, the only difference being the shape of arrows. An arrow in a multicategory looks like

with a finite family of objects as the source and one object as the target.
Composition turns a tree of arrows into a single arrow, e.g.

Example. A one-object multicategory is an operad (multicategories are sometimes called many-object operads, or 'colored operads').

Example. A monoidal category \mathcal{C} gives rise to a multicategory $\widehat{\mathcal{C}}$ with the same set of objects. An arrow

$$
X_{1}, \ldots, X_{n} \rightarrow Y
$$

in $\widehat{\mathfrak{C}}$ is an arrow

$$
X_{1} \otimes \cdots \otimes X_{n} \rightarrow Y
$$

in \mathcal{C}. Composition in $\widehat{\mathcal{C}}$ is derived from composition and tensor product in \mathcal{C}.
A_{∞}-categories constitute a symmetric multicategory

Definition. Let $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}, \mathcal{B}$ be A_{∞}-categories. An A_{∞}-functor

$$
f: \mathcal{A}_{1}, \ldots, \mathcal{A}_{n} \rightarrow \mathcal{B}
$$

is a morphism of augmented dg cocategories

$$
T s \mathcal{A}_{1} \boxtimes \cdots \boxtimes T s \mathcal{A}_{n} \rightarrow T s \mathcal{B} .
$$

Explicitly, an A_{∞}-functor $f: \mathcal{A}_{1}, \ldots, \mathcal{A}_{n} \rightarrow \mathcal{B}$ consists of

- a function

$$
\text { Ob } f: \prod_{i=1}^{n} \operatorname{Ob} \mathcal{A}_{i} \rightarrow \operatorname{Ob} \mathcal{B}, \quad\left(X_{1}, \ldots, X_{n}\right) \mapsto\left(X_{1}, \ldots, X_{n}\right) f
$$

- for each $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n} \backslash\{0\}$ and $X_{i}^{j} \in \operatorname{Ob} \mathcal{A}_{i}, i=1, \ldots, n$, $j=1, \ldots, k_{i}$, a \mathbb{k}-linear map

$$
\begin{aligned}
& {\left[\mathcal{A}_{1}\left(X_{1}^{0}, X_{1}^{1}\right) \otimes \cdots \otimes \mathcal{A}_{1}\left(X_{1}^{k_{1}-1}, X_{1}^{k_{1}}\right)\right] \otimes} \\
& \quad \cdots \otimes\left[\mathcal{A}_{n}\left(X_{n}^{0}, X_{n}^{1}\right) \otimes \cdots \otimes \mathcal{A}_{n}\left(X_{n}^{k_{n}-1}, X_{n}^{k_{n}}\right)\right] \\
& \quad{ }^{f_{k}} \\
& \mathcal{B}\left(\left(X_{1}^{0}, \ldots, X_{n}^{0}\right) f,\left(X_{1}^{k_{1}}, \ldots, X_{n}^{k_{n}}\right) f\right)
\end{aligned}
$$

of degree $1-\left(k_{1}+\cdots+k_{n}\right)$
subject to equations.
Denote by A_{∞} the symmetric multicategory of A_{∞}-categories and A_{∞}-functors.

The multicategory A_{∞} is closed

For each collection of A_{∞}-categories $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}, \mathcal{B}$, there exists a 'functor' A_{∞}-category $\underline{\mathrm{A}_{\infty}}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n} ; \mathcal{B}\right)$ and an evaluation A_{∞}-functor

$$
\operatorname{ev}^{\mathrm{A}_{\infty}}: \mathcal{A}_{1}, \ldots, \mathcal{A}_{n}, \underline{\mathrm{~A}_{\infty}}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n} ; \mathcal{B}\right) \rightarrow \mathcal{B}
$$

such that the mapping

$$
\begin{aligned}
\mathrm{A}_{\infty}\left(\mathcal{B}_{1}, \ldots, \mathcal{B}_{m} ; \underline{\mathrm{A}_{\infty}}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n} ; \mathcal{C}\right)\right) & \rightarrow \mathrm{A}_{\infty}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}, \mathcal{B}_{1} \ldots, \mathcal{B}_{m} ; \mathcal{C}\right), \\
f & \mapsto\left(1_{\mathcal{A}_{1}}, \ldots, 1_{\mathcal{A}_{n}}, f\right) \mathrm{ev}^{\mathrm{A}_{\infty}}
\end{aligned}
$$

is a bijection. The objects of the A_{∞}-category $\underline{\mathrm{A}_{\infty}}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n} ; \mathcal{B}\right)$ are A_{∞}-functors $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n} \rightarrow \mathcal{B}$. For A_{∞}-functors $f, g: \mathcal{A}_{1}, \ldots, \mathcal{A}_{n} \rightarrow \mathcal{B}$,

$$
\begin{aligned}
\underline{\mathrm{A}_{\infty}}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n} ; \mathcal{B}\right) & (f, g)=\left\{A_{\infty} \text {-transformations } f \rightarrow g\right\} \\
= & \left\{(f, g) \text {-coderivations Ts } \mathcal{A}_{1} \boxtimes \cdots \boxtimes T s \mathcal{A}_{n} \rightarrow \text { Ts } \mathcal{B}\right\} .
\end{aligned}
$$

The evaluation A_{∞}-functor acts on objects as expected:
$\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}, \underline{\mathrm{~A}_{\infty}}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n} ; \mathcal{B}\right) \rightarrow \mathcal{B}, \quad\left(X_{1}, \ldots, X_{n}, f\right) \mapsto\left(X_{1}, \ldots, X_{n}\right) f$.
In the case $n=1$, the A_{∞}-category $\underline{\mathrm{A}_{\infty}}(\mathcal{A} ; \mathcal{B})$ has been considered by many authors (Keller, Kontsevich, Lefèvre-Hasegawa, Lyubashenko, Soibelman...).

Unital A_{∞}-categories

Definition. An A_{∞}-category \mathcal{A} is called unital if, for each $X \in \operatorname{Ob} \mathcal{A}$, there is a cycle $1_{X} \in \mathcal{A}(X, X)^{0}$, called the identity of X, such that

$$
\left(1_{X} \otimes \mathrm{id}\right) m_{2},\left(\mathrm{id} \otimes 1_{Y}\right) m_{2} \sim \mathrm{id}: \mathcal{A}(X, Y) \rightarrow \mathcal{A}(X, Y),
$$

for each $X, Y \in \mathrm{Ob} \mathcal{A}$.
A unital A_{∞}-category \mathcal{A} gives rise to a \mathbb{k}-linear category $H^{0}(\mathcal{A})$:
$\operatorname{Ob} H^{0}(\mathcal{A})=\operatorname{Ob} \mathcal{A}, \quad H^{0}(\mathcal{A})(X, Y)=H^{0}\left(\mathcal{A}(X, Y), m_{1}\right), \quad X, Y \in \operatorname{Ob} \mathcal{A}$.
Composition is induced by m_{2}, and the identity of an object X is the class $\left[1_{X}\right] \in H^{0}(\mathcal{A})(X, X)$. The category $H^{0}(\mathcal{A})$ is called the homotopy category of \mathcal{A}.

An A_{∞}-functor $f: \mathcal{A} \rightarrow \mathcal{B}$ is unital if it preserves identities modulo boundaries:

$$
1_{X} f_{1}-1_{X f} \in \operatorname{Im} m_{1} .
$$

A unital A_{∞}-functor $f: \mathcal{A} \rightarrow \mathcal{B}$ gives rise to a \mathbb{k}-linear functor

$$
H^{0}(f): H^{0}(\mathcal{A}) \rightarrow H^{0}(\mathcal{B})
$$

such that $\operatorname{Ob} H^{0}(f)=\operatorname{Ob} f$, and for each $X, Y \in \operatorname{Ob} \mathcal{A}$, the \mathbb{k}-linear map

$$
H^{0}(f): H^{0}(\mathcal{A})(X, Y) \rightarrow H^{0}(\mathcal{B})(X f, Y f)
$$

is induced by $f_{1}: \mathcal{A}(X, Y) \rightarrow \mathcal{B}(X f, Y f)$.
An A_{∞}-functor of many argument is unital if it is unital in each argument.

The symmetric closed multicategory of unital A_{∞}-categories

Composition of unital A_{∞}-functors is unital. Let $\mathrm{A}_{\infty}^{\mathrm{u}} \subset \mathrm{A}_{\infty}$ denote the submulticategory of unital A_{∞}-categories and unital A_{∞}-functors. It is also closed:

$$
\underline{\mathrm{A}_{\propto}^{\mathrm{u}}}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n} ; \mathcal{B}\right) \subset \underline{\mathrm{A}_{\infty}}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n} ; \mathcal{B}\right)
$$

is the full A_{∞}-subcategory whose objects are unital A_{∞}-functors. It is a unital A_{∞}-category. The evaluation A_{∞}-functor $\mathrm{ev}^{\mathrm{A}}{ }_{\infty}^{\mathrm{u}}$ is the restriction of $\mathrm{ev}^{\mathrm{A}_{\infty}}$. It is a unital A_{∞}-functor.

Definition. Unital A_{∞}-functors

$$
f, g: \mathcal{A}_{1}, \ldots, \mathcal{A}_{n} \rightarrow \mathcal{B}
$$

are called isomorphic if they are isomorphic as objects of the category

$$
H^{0}\left(\underline{\mathrm{~A}_{\infty}^{\mathrm{u}}}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n} ; \mathcal{B}\right)\right) .
$$

Opposite A_{∞}-categories

Definition. Let \mathcal{A} be an A_{∞}-category. The opposite A_{∞}-category $\mathcal{A}^{\mathrm{op}}$ is given by

$$
\mathrm{Ob} \mathcal{A}^{\mathrm{op}}=\mathrm{Ob} \mathcal{A}, \quad \mathcal{A}^{\mathrm{op}}(X, Y)=\mathcal{A}(Y, X), \quad X, Y \in \operatorname{Ob} \mathcal{A},
$$

and operations $m_{n}^{\mathcal{A}^{\text {op }}}$ are given by

$$
m_{n}^{\mathcal{A}^{\text {op }}}=(-1)^{n(n+1) / 2+1}\binom{\text { signed permutation }}{\text { of arguments }} \cdot m_{n}^{\mathcal{A}} .
$$

The correspondence $\mathcal{A} \mapsto \mathcal{A}^{\text {op }}$ extends to A_{∞}-functors and yields a symmetric multifunctor ${ }^{\text {op }}: \mathrm{A}_{\infty} \rightarrow \mathrm{A}_{\infty}$.

The opposite of a unital A_{∞}-category (resp. A_{∞}-functor) is again unital, hence $-{ }^{\mathrm{op}}$ restricts to a symmetric multifunctor $-^{\mathrm{op}}: \mathrm{A}_{\infty}^{\mathrm{u}} \rightarrow \mathrm{A}_{\infty}^{\mathrm{u}}$.

2. Serre functors

Hereafter, \mathbb{k} is a field.

Definition (Bondal-Kapranov). Let \mathcal{C} be a \mathbb{k}-linear category. A \mathbb{k}-linear functor $S: \mathcal{C} \rightarrow \mathcal{C}$ is called a (right) Serre functor if there exists an isomorphism

$$
\mathfrak{C}(X, Y S) \cong \mathcal{C}(Y, X)^{*}
$$

natural in $X, Y \in \mathrm{Ob} \mathcal{C}$, where $*$ denotes the dual vector space. A right Serre functor, if it exists, is unique up to isomorphism.

Example. Let X be a smooth projective variety of dimension n over the field \mathbb{k}. Let ω_{X} denote the canonical sheaf on X. Let $\mathcal{C}=D^{b}\left(\operatorname{Coh}_{X}\right)$ be the bounded derived category of coherent sheaves on X. Then the functor

$$
S=-\otimes \omega_{X}[n]
$$

is a right Serre functor.

3. Serre A_{∞}-functors
 Definition

For an A_{∞}-category \mathcal{A}, there is an A_{∞}-functor

$$
\operatorname{Hom}_{\mathcal{A}}: \mathcal{A}^{\mathrm{op}}, \mathcal{A} \rightarrow \underline{\mathrm{C}}_{\mathfrak{k}}, \quad(X, Y) \mapsto\left(\mathcal{A}(X, Y), m_{1}\right) .
$$

It is unital if so is \mathcal{A}. The A_{∞}-functor $\mathcal{A} \rightarrow \underline{\mathrm{A}_{\infty}}\left(\mathcal{A}^{\text {op }} ;{\underline{C_{k}}}\right)$ that corresponds to $\operatorname{Hom}_{\mathcal{A}}: \mathcal{A}^{\mathrm{op}}, \mathcal{A} \rightarrow \underline{\mathrm{C}}_{\mathrm{k}}$ by closedness of the multicategory A_{∞} is precisely the Yoneda embedding.

Definition (Kontsevich-Soibelman). Let \mathcal{A} be a unital A_{∞}-category. A unital A_{∞}-functor $S: \mathcal{A} \rightarrow \mathcal{A}$ is called a (right) Serre A_{∞}-functor if the diagram

commutes up to isomorphism (in $\left.H^{0}\left(\underline{\mathrm{~A}_{\infty}^{u}}\left(\mathcal{A}^{\text {op }}, \mathcal{A} ;{\underline{C_{k}}}\right)\right)\right)$. Here

$$
D: \underline{\mathrm{C}}_{\mathbb{k}}^{\mathrm{op}} \rightarrow \underline{\mathrm{C}}_{\mathfrak{k}}, \quad M \mapsto M^{*}=\underline{\mathrm{C}}_{\mathbb{k}}(M, \mathbb{k}),
$$

is the duality dg functor.
Proposition. As in the case of ordinary Serre functors, if a right Serre A_{∞}-functor exists, then it is unique up to isomorphism.

A_{∞}-categories closed under shifts
 (see also V. Lyubashenko's talk)

Let \mathcal{A} be an A_{∞}-category. It gives rise to an A_{∞}-category $\mathcal{A}^{[]}$obtained from \mathcal{A} by formally adding shifts of objects:
$\operatorname{Ob} \mathcal{A}^{[]}=\operatorname{Ob} \mathcal{A} \times \mathbb{Z}, \quad \mathcal{A}^{[]}((X, n),(Y, m))=\mathcal{A}(X, Y)[m-n]$.
\mathcal{A} embeds as a full A_{∞}-subcategory into $\mathcal{A}^{[]}$via

$$
u: \mathcal{A} \hookrightarrow \mathcal{A}^{[]}, \quad X \mapsto(X, 0) .
$$

Definition. A unital A_{∞}-category \mathcal{A} is called closed under shifts if u is an A_{∞}-equivalence.

Equivalently, each object (X, n) of $\mathcal{A}^{[]}$is isomorphic in $H^{0}\left(\mathcal{A}^{[]}\right)$to an object of the form $(Y, 0)$.

Example. Pretriangulated A_{∞}-categories (to be defined by V. Lyubashenko) are closed under shifts.

Main theorem

As above, assume that \mathbb{k} is a field.

Theorem. (1) If $S: \mathcal{A} \rightarrow \mathcal{A}$ is a right Serre A_{∞}-functor, then the induced functor $H^{0}(S): H^{0}(\mathcal{A}) \rightarrow H^{0}(\mathcal{A})$ is an ordinary right Serre functor.
(2) Conversely, suppose that \mathcal{A} is closed under shifts and that $H^{0}(\mathcal{A})$ admits a right Serre functor $\bar{S}: H^{0}(\mathcal{A}) \rightarrow H^{0}(\mathcal{A})$. Then there exists a right Serre A_{∞}-functor $S: \mathcal{A} \rightarrow \mathcal{A}$ such that $H^{0}(S)=\bar{S}$.

Example. By results of Drinfeld, we know that $D^{b}\left(\operatorname{Coh}_{X}\right)$ is of the form $H^{0}(\mathcal{A})$, where \mathcal{A} is the dg quotient of the dg category of complexes of coherent sheaves over the full dg subcategory of acyclic complexes. Therefore, the Serre functor $S=-\otimes \omega_{X}[n]$ lifts to a Serre A_{∞}-functor $\mathcal{A} \rightarrow \mathcal{A}$.

