Serre A_{∞} -functors

Oleksandr Manzyuk

joint work with Volodymyr Lyubashenko math.CT/0701165

0. Notation

- 1. Preliminaries on A_∞ -categories
- 2. Serre functors
- 3. Serre A_{∞} -functors

0. Notation

- \Bbbk denotes a (ground) commutative ring
- k-linear = enriched in k-mod
- graded = \mathbb{Z} -graded
- $\bullet~C_{\Bbbk}=$ the category of complexes of $\Bbbk\text{-modules}$
- A differential graded (dg) category is a category enriched in C_{k} .

In particular, since C_k is a closed monoidal category, it gives rise to a category \underline{C}_k enriched in C_k , i.e., to a dg category.

• We use geometric notation for composition:

$$\xrightarrow{f} \xrightarrow{g} = \xrightarrow{fg}$$

1. Preliminaries on A_{∞} -categories A_{∞} -categories

Definition. An A_{∞} -category \mathcal{A} consists of

- a set of objects $Ob \mathcal{A}$
- for each $X, Y \in Ob \mathcal{A}$, a graded \Bbbk -module $\mathcal{A}(X, Y)$
- for each $n \ge 1$ and $X_0, \ldots, X_n \in Ob \mathcal{A}$, a k-linear map

$$m_n: \mathcal{A}(X_0, X_1) \otimes \cdots \otimes \mathcal{A}(X_{n-1}, X_n) \to \mathcal{A}(X_0, X_n)$$

of degree 2 - n,

satisfying the equations

$$\sum_{p+k+q=n} (-1)^{pk+q} (1^{\otimes p} \otimes m_k \otimes 1^{\otimes q}) m_{p+1+q} = 0, \quad n \ge 1.$$

$$(n = 1) \qquad m_1^2 = 0$$

$$(n = 2) \qquad m_2 m_1 = (m_1 \otimes 1 + 1 \otimes m_1) m_2$$

$$(n = 3) \qquad (m_2 \otimes 1) m_2 - (1 \otimes m_2) m_2$$

$$= m_3 m_1 + (m_1 \otimes 1 \otimes 1 + 1 \otimes m_1 \otimes 1 + 1 \otimes 1 \otimes m_1) m_3$$

Example. A dg category can be viewed as an A_{∞} -category in which $m_n = 0$ for $n \ge 3$.

A_{∞} -functors

Definition. An A_{∞} -functor $f : \mathcal{A} \to \mathcal{B}$ consists of

- a function $\operatorname{Ob} f : \operatorname{Ob} \mathcal{A} \to \operatorname{Ob} \mathcal{B}, X \mapsto Xf$
- for each $n \ge 1$ and $X_0, \ldots, X_n \in Ob \mathcal{A}$, a k-linear map

$$f_n: \mathcal{A}(X_0, X_1) \otimes \cdots \otimes \mathcal{A}(X_{n-1}, X_n) \to \mathcal{B}(X_0 f, X_n f)$$

of degree 1-n,

satisfying the equations

$$\sum_{i_1+\dots+i_l=n}^{l>0} (-1)^{\sigma} (f_{i_1} \otimes \dots \otimes f_{i_l}) m_l$$
$$= \sum_{p+k+q=n} (-1)^{pk+q} (1^{\otimes p} \otimes m_k \otimes 1^{\otimes q}) f_{p+1+q}, \quad n \ge 1,$$

where $\sigma = (i_2 - 1) + 2(i_3 - 1) + \dots + (l - 1)(i_l - 1).$

(n = 1)
$$f_1 m_1 = m_1 f_1$$

(n = 2) $m_2 f_1 - (f_1 \otimes f_1) m_2 = f_2 m_1 + (m_1 \otimes 1 + 1 \otimes m_1) f_2$

Example. A dg functor can be viewed as an A_{∞} -functor with $f_n = 0$ for $n \ge 2$.

Graded quivers

Definition. A graded quiver \mathcal{A} consists of

- a set of objects Ob A
- for each $X, Y \in Ob \mathcal{A}$, a graded \Bbbk -module $\mathcal{A}(X, Y)$.

A morphism $f:\mathcal{A} \rightarrow \mathcal{B}$ of graded quivers consists of

- a function $\operatorname{Ob} f : \operatorname{Ob} \mathcal{A} \to \operatorname{Ob} \mathcal{B}$, $X \mapsto Xf$
- for each $X, Y \in Ob \mathcal{A}$, a k-linear map

$$f = f_{X,Y} : \mathcal{A}(X,Y) \to \mathcal{B}(Xf,Yf)$$

of degree 0.

Let \mathscr{Q} denote the category of graded quivers. It is symmetric monoidal with tensor product $(\mathcal{A}, \mathcal{B}) \mapsto \mathcal{A} \boxtimes \mathcal{B}$ given by

$$Ob \mathcal{A} \boxtimes \mathcal{B} = Ob \mathcal{A} \times Ob \mathcal{B},$$
$$(\mathcal{A} \boxtimes \mathcal{B})((X, U), (Y, V)) = \mathcal{A}(X, Y) \otimes \mathcal{B}(U, V),$$

 $(X, Y \in Ob \mathcal{A}, U, V \in Ob \mathcal{B})$. The unit object is the graded quiver 1 with

$$Ob \, \mathbb{1} = \{*\}, \qquad \mathbb{1}(*,*) = \mathbb{k}.$$

Graded quivers with a fixed set of objects

For a set S, denote by \mathscr{Q}/S the fibre of the functor $Ob : \mathscr{Q} \to \mathbf{Set}$ over S, i.e., the subcategory of \mathscr{Q} whose objects are graded quivers with the set of objects S and whose morphisms are morphisms of graded quivers acting as the identity on objects.

 \mathscr{Q}/S is a monoidal category with tensor product $(\mathcal{A},\mathcal{B})\mapsto \mathcal{A}\otimes \mathcal{B}$ given by

$$(\mathcal{A} \otimes \mathcal{B})(X, Z) = \bigoplus_{Y \in S} \mathcal{A}(X, Y) \otimes \mathcal{B}(Y, Z), \qquad X, Z \in S.$$

The unit object is the **discrete quiver** $\Bbbk S$ given by

$$Ob \, \mathbb{k}S = S, \qquad \mathbb{k}S(X, Y) = \begin{cases} \mathbb{k} & \text{ if } X = Y, \\ 0 & \text{ if } X \neq Y, \end{cases} \qquad X, Y \in S.$$

Cocategories

Definition. An **augmented graded cocategory** is a graded quiver \mathcal{C} equipped with the structure of an augmented counital coassociative coalgebra in the monoidal category $\mathcal{Q}/\operatorname{Ob}\mathcal{C}$. Therefore, \mathcal{C} comes with

- a comultiplication $\Delta : \mathfrak{C} \to \mathfrak{C} \otimes \mathfrak{C}$
- a counit $\varepsilon : \mathfrak{C} \to \Bbbk \operatorname{Ob} \mathfrak{C}$
- an augmentation $\eta : \mathbb{k} \operatorname{Ob} \mathfrak{C} \to \mathfrak{C}$

which are morphisms in $\mathscr{Q} / \operatorname{Ob} \mathfrak{C}$ satisfying the usual axioms.

A morphism of augmented graded cocategories is a morphism of graded quivers that preserves the comultiplication, counit, and augmentation.

The category of augmented graded cocategories inherits the tensor product \boxtimes from \mathscr{Q} .

Main example: tensor cocategory of a quiver

Let \mathcal{A} be a graded quiver. Denote

$$T^{n}\mathcal{A} = \mathcal{A}^{\otimes n} = \underbrace{\mathcal{A} \otimes \cdots \otimes \mathcal{A}}_{n \text{ times}} \text{ (tensor product in } \mathscr{Q}/\operatorname{Ob}\mathcal{A}\text{)}.$$

The graded quiver

$$T\mathcal{A} = \bigoplus_{n=0}^{\infty} T^n \mathcal{A}$$

equipped with the **cut comultiplication**

$$\Delta_0: h_1 \otimes \cdots \otimes h_n \mapsto \sum_{k=0}^n h_1 \otimes \cdots \otimes h_k \bigotimes h_{k+1} \otimes \cdots \otimes h_n,$$

the counit

$$\varepsilon = \mathrm{pr}_0 : T\mathcal{A} \to T^0\mathcal{A} = \mathbb{k} \operatorname{Ob} \mathcal{A},$$

and the augmentation

$$\eta = \operatorname{in}_0 : \mathbb{k} \operatorname{Ob} \mathcal{A} = T^0 \mathcal{A} \hookrightarrow T \mathcal{A}$$

is an augmented graded cocategory.

Cocategory approach to A_{∞} -categories

For a graded quiver \mathcal{A} , denote by $s\mathcal{A}$ its **suspension**:

$$Ob \, s\mathcal{A} = Ob \, \mathcal{A}, \qquad (s\mathcal{A}(X,Y))^d = \mathcal{A}(X,Y)^{d+1}, \quad X, Y \in Ob \, \mathcal{A}.$$

Let $s : \mathcal{A} \to s\mathcal{A}$ denote the 'identity' map of degree -1.

Proposition (folklore). There is a bijection between structures $(m_n)_{n \ge 1}$ of an A_{∞} -category on a graded quiver \mathcal{A} and differentials $b : Ts\mathcal{A} \to Ts\mathcal{A}$ of degree 1 such that $(Ts\mathcal{A}, \Delta_0, \mathrm{pr}_0, \mathrm{in}_0, b)$ is an **augmented differential** graded cocategory, i.e.,

$$b^2 = 0$$
, $b\Delta_0 = \Delta_0 (b \otimes 1 + 1 \otimes b)$, $b \operatorname{pr}_0 = 0$, $\operatorname{in}_0 b = 0$.

The bijection is given by the formulas

$$m_{n} = \left[\mathcal{A}^{\otimes n} \xrightarrow{s^{\otimes n}} (s\mathcal{A})^{\otimes n} \xrightarrow{b_{n}} s\mathcal{A} \xrightarrow{s^{-1}} \mathcal{A}\right],$$

$$b_{n} = \left[(s\mathcal{A})^{\otimes n} \xrightarrow{c^{\operatorname{in}_{n}}} Ts\mathcal{A} \xrightarrow{b} Ts\mathcal{A} \xrightarrow{\operatorname{pr}_{1}} s\mathcal{A}\right],$$

$$b_{nm} = \sum_{\substack{p+k+q=n\\p+1+q=m}} 1^{\otimes p} \otimes b_{k} \otimes 1^{\otimes q} : T^{n}s\mathcal{A} \to T^{m}s\mathcal{A}.$$

We may think of A_{∞} -categories as of augmented dg cocategories of particular form. Then A_{∞} -functors $f : \mathcal{A} \to \mathcal{B}$ correspond precisely to morphisms

$$(Ts\mathcal{A}, b) \to (Ts\mathcal{B}, b)$$

of augmented dg cocategories.

The advantage is that we can easily define A_{∞} -functors of many arguments!

A short reminder about multicategories

A **multicategory** is just like a category, the only difference being the shape of arrows. An arrow in a multicategory looks like

with a finite family of objects as the source and one object as the target. Composition turns a tree of arrows into a single arrow, e.g.

Example. A one-object multicategory is an operad (multicategories are sometimes called many-object operads, or 'colored operads').

Example. A monoidal category \mathcal{C} gives rise to a multicategory $\widehat{\mathcal{C}}$ with the same set of objects. An arrow

$$X_1,\ldots,X_n\to Y$$

in $\widehat{\mathbb{C}}$ is an arrow

$$X_1 \otimes \cdots \otimes X_n \to Y$$

in \mathcal{C} . Composition in $\widehat{\mathcal{C}}$ is derived from composition and tensor product in \mathcal{C} .

A_{∞} -categories constitute a symmetric multicategory

Definition. Let A_1, \ldots, A_n, B be A_∞ -categories. An A_∞ -functor

 $f:\mathcal{A}_1,\ldots,\mathcal{A}_n\to\mathcal{B}$

is a morphism of augmented dg cocategories

$$Ts\mathcal{A}_1 \boxtimes \cdots \boxtimes Ts\mathcal{A}_n \to Ts\mathcal{B}.$$

Explicitly, an A_{∞} -functor $f : \mathcal{A}_1, \ldots, \mathcal{A}_n \to \mathcal{B}$ consists of

• a function

j

$$\operatorname{Ob} f : \prod_{i=1}^{n} \operatorname{Ob} \mathcal{A}_{i} \to \operatorname{Ob} \mathcal{B}, \quad (X_{1}, \dots, X_{n}) \mapsto (X_{1}, \dots, X_{n}) f$$

• for each $k = (k_1, \ldots, k_n) \in \mathbb{N}^n \setminus \{0\}$ and $X_i^j \in Ob \mathcal{A}_i$, $i = 1, \ldots, n$,

$$= 1, \dots, k_i, \text{ a } \Bbbk\text{-linear map}$$

$$[\mathcal{A}_1(X_1^0, X_1^1) \otimes \dots \otimes \mathcal{A}_1(X_1^{k_1-1}, X_1^{k_1})] \otimes$$

$$\dots \otimes [\mathcal{A}_n(X_n^0, X_n^1) \otimes \dots \otimes \mathcal{A}_n(X_n^{k_n-1}, X_n^{k_n})]$$

$$\downarrow^{f_k}$$

$$\mathcal{B}((X_1^0, \dots, X_n^0)f, (X_1^{k_1}, \dots, X_n^{k_n})f)$$

of degree $1 - (k_1 + \cdots + k_n)$

subject to equations.

Denote by A_{∞} the symmetric multicategory of A_{∞} -categories and A_{∞} -functors.

The multicategory A_∞ is closed

For each collection of A_{∞} -categories $\mathcal{A}_1, \ldots, \mathcal{A}_n$, \mathcal{B} , there exists a 'functor' A_{∞} -category $\underline{A}_{\infty}(\mathcal{A}_1, \ldots, \mathcal{A}_n; \mathcal{B})$ and an **evaluation** A_{∞} -functor

$$\operatorname{ev}^{\mathsf{A}_{\infty}}: \mathcal{A}_1, \dots, \mathcal{A}_n, \underline{\mathsf{A}_{\infty}}(\mathcal{A}_1, \dots, \mathcal{A}_n; \mathcal{B}) \to \mathcal{B}$$

such that the mapping

$$A_{\infty}(\mathcal{B}_{1},\ldots,\mathcal{B}_{m};\underline{A_{\infty}}(\mathcal{A}_{1},\ldots,\mathcal{A}_{n};\mathcal{C})) \to A_{\infty}(\mathcal{A}_{1},\ldots,\mathcal{A}_{n},\mathcal{B}_{1}\ldots,\mathcal{B}_{m};\mathcal{C}),$$
$$f \mapsto (1_{\mathcal{A}_{1}},\ldots,1_{\mathcal{A}_{n}},f) \operatorname{ev}^{A_{\infty}}$$

is a bijection. The objects of the A_{∞} -category $\underline{A}_{\infty}(\mathcal{A}_1, \dots, \mathcal{A}_n; \mathcal{B})$ are A_{∞} -functors $\mathcal{A}_1, \dots, \mathcal{A}_n \to \mathcal{B}$. For A_{∞} -functors $f, g : \mathcal{A}_1, \dots, \mathcal{A}_n \to \mathcal{B}$,

$$\underline{\mathsf{A}}_{\infty}(\mathcal{A}_{1},\ldots,\mathcal{A}_{n};\mathcal{B})(f,g) = \{ A_{\infty}\text{-transformations } f \to g \}$$
$$= \{ (f,g)\text{-coderivations } Ts\mathcal{A}_{1} \boxtimes \cdots \boxtimes Ts\mathcal{A}_{n} \to Ts\mathcal{B} \}.$$

The evaluation A_{∞} -functor acts on objects as expected:

$$\mathcal{A}_1, \ldots, \mathcal{A}_n, \underline{A}_{\infty}(\mathcal{A}_1, \ldots, \mathcal{A}_n; \mathcal{B}) \to \mathcal{B}, \quad (X_1, \ldots, X_n, f) \mapsto (X_1, \ldots, X_n) f.$$

In the case $n = 1$, the A_{∞} -category $\underline{A}_{\infty}(\mathcal{A}; \mathcal{B})$ has been considered by many authors (Keller, Kontsevich, Lefèvre-Hasegawa, Lyubashenko, Soibelman...).

Unital A_{∞} -categories

Definition. An A_{∞} -category \mathcal{A} is called **unital** if, for each $X \in Ob \mathcal{A}$, there is a cycle $1_X \in \mathcal{A}(X, X)^0$, called the **identity** of X, such that

$$(1_X \otimes \mathrm{id})m_2, (\mathrm{id} \otimes 1_Y)m_2 \sim \mathrm{id} : \mathcal{A}(X, Y) \to \mathcal{A}(X, Y),$$

for each $X, Y \in Ob \mathcal{A}$.

A unital A_{∞} -category \mathcal{A} gives rise to a \Bbbk -linear category $H^{0}(\mathcal{A})$:

$$\operatorname{Ob} H^0(\mathcal{A}) = \operatorname{Ob} \mathcal{A}, \quad H^0(\mathcal{A})(X,Y) = H^0(\mathcal{A}(X,Y),m_1), \quad X,Y \in \operatorname{Ob} \mathcal{A}.$$

Composition is induced by m_2 , and the identity of an object X is the class $[1_X] \in H^0(\mathcal{A})(X, X)$. The category $H^0(\mathcal{A})$ is called the **homotopy cate-gory** of \mathcal{A} .

An A_{∞} -functor $f : \mathcal{A} \to \mathcal{B}$ is **unital** if it preserves identities modulo boundaries:

$$1_X f_1 - 1_{Xf} \in \operatorname{Im} m_1.$$

A unital $A_\infty\text{-}\mathsf{functor}\ f:\mathcal{A}\to\mathcal{B}$ gives rise to a $\Bbbk\text{-}\mathsf{linear}\ \mathsf{functor}$

$$H^0(f): H^0(\mathcal{A}) \to H^0(\mathcal{B})$$

such that $Ob H^0(f) = Ob f$, and for each $X, Y \in Ob A$, the k-linear map

$$H^0(f): H^0(\mathcal{A})(X,Y) \to H^0(\mathcal{B})(Xf,Yf)$$

is induced by $f_1 : \mathcal{A}(X, Y) \to \mathcal{B}(Xf, Yf).$

An A_{∞} -functor of many argument is **unital** if it is unital in each argument.

The symmetric closed multicategory of unital A_{∞} -categories

Composition of unital A_{∞} -functors is unital. Let $A_{\infty}^{u} \subset A_{\infty}$ denote the submulticategory of unital A_{∞} -categories and unital A_{∞} -functors. It is also closed:

$$\mathsf{A}^{\mathrm{u}}_{\infty}(\mathcal{A}_1,\ldots,\mathcal{A}_n;\mathcal{B})\subset\mathsf{A}_{\infty}(\mathcal{A}_1,\ldots,\mathcal{A}_n;\mathcal{B})$$

is the full A_{∞} -subcategory whose objects are unital A_{∞} -functors. It is a unital A_{∞} -category. The evaluation A_{∞} -functor $ev^{A_{\infty}^{u}}$ is the restriction of $ev^{A_{\infty}}$. It is a unital A_{∞} -functor.

Definition. Unital A_{∞} -functors

$$f, g: \mathcal{A}_1, \ldots, \mathcal{A}_n \to \mathcal{B}$$

are called **isomorphic** if they are isomorphic as objects of the category

$$H^0(\underline{\mathsf{A}^{\mathrm{u}}_{\infty}}(\mathcal{A}_1,\ldots,\mathcal{A}_n;\mathcal{B})).$$

Opposite A_{∞} -categories

Definition. Let \mathcal{A} be an A_{∞} -category. The **opposite** A_{∞} -category \mathcal{A}^{op} is given by

$$\operatorname{Ob} \mathcal{A}^{\operatorname{op}} = \operatorname{Ob} \mathcal{A}, \qquad \mathcal{A}^{\operatorname{op}}(X, Y) = \mathcal{A}(Y, X), \quad X, Y \in \operatorname{Ob} \mathcal{A},$$

and operations $m_n^{\mathcal{A}^{\mathrm{op}}}$ are given by

$$m_n^{\mathcal{A}^{\mathrm{op}}} = (-1)^{n(n+1)/2+1} \left(egin{array}{c} \mathrm{signed \ permutation} \\ \mathrm{of \ arguments} \end{array}
ight) \cdot m_n^{\mathcal{A}}.$$

The correspondence $\mathcal{A} \mapsto \mathcal{A}^{\mathrm{op}}$ extends to A_{∞} -functors and yields a symmetric multifunctor $-^{\mathrm{op}} : \mathsf{A}_{\infty} \to \mathsf{A}_{\infty}$.

The opposite of a unital A_{∞} -category (resp. A_{∞} -functor) is again unital, hence $-^{\mathrm{op}}$ restricts to a symmetric multifunctor $-^{\mathrm{op}} : \mathsf{A}^{\mathrm{u}}_{\infty} \to \mathsf{A}^{\mathrm{u}}_{\infty}$.

2. Serre functors

Hereafter, \Bbbk is a **field**.

Definition (Bondal–Kapranov). Let \mathcal{C} be a \Bbbk -linear category. A \Bbbk -linear functor $S : \mathcal{C} \to \mathcal{C}$ is called a **(right) Serre functor** if there exists an isomorphism

$$\mathcal{C}(X, YS) \cong \mathcal{C}(Y, X)^*$$

natural in $X, Y \in Ob \mathcal{C}$, where * denotes the dual vector space. A right Serre functor, if it exists, is unique up to isomorphism.

Example. Let X be a smooth projective variety of dimension n over the field \Bbbk . Let ω_X denote the canonical sheaf on X. Let $\mathcal{C} = D^b(\operatorname{Coh}_X)$ be the bounded derived category of coherent sheaves on X. Then the functor

$$S = -\otimes \omega_X[n]$$

is a right Serre functor.

3. Serre A_{∞} -functors Definition

For an $A_\infty\text{-}\mathsf{category}\ \mathcal{A},$ there is an $A_\infty\text{-}\mathsf{functor}$

 $\operatorname{Hom}_{\mathcal{A}}: \mathcal{A}^{\operatorname{op}}, \mathcal{A} \to \underline{\mathsf{C}}_{\Bbbk}, \qquad (X, Y) \mapsto (\mathcal{A}(X, Y), m_1).$

It is unital if so is \mathcal{A} . The A_{∞} -functor $\mathcal{A} \to \underline{A}_{\infty}(\mathcal{A}^{\mathrm{op}}; \underline{C}_{\Bbbk})$ that corresponds to $\operatorname{Hom}_{\mathcal{A}} : \mathcal{A}^{\mathrm{op}}, \mathcal{A} \to \underline{C}_{\Bbbk}$ by closedness of the multicategory A_{∞} is precisely the Yoneda embedding.

Definition (Kontsevich–Soibelman). Let \mathcal{A} be a unital A_{∞} -category. A unital A_{∞} -functor $S : \mathcal{A} \to \mathcal{A}$ is called a **(right) Serre** A_{∞} -functor if the diagram

commutes up to isomorphism (in $H^0(\underline{A^{op}}_{\infty}(\mathcal{A}^{op},\mathcal{A};\underline{C}_{\mathbb{k}}))$). Here

$$D: \underline{\mathsf{C}}_{\Bbbk}^{\operatorname{op}} \to \underline{\mathsf{C}}_{\Bbbk}, \qquad M \mapsto M^* = \underline{\mathsf{C}}_{\Bbbk}(M, \Bbbk),$$

is the duality dg functor.

Proposition. As in the case of ordinary Serre functors, if a right Serre A_{∞} -functor exists, then it is unique up to isomorphism.

A_{∞} -categories closed under shifts

(see also V. Lyubashenko's talk)

Let \mathcal{A} be an A_{∞} -category. It gives rise to an A_{∞} -category $\mathcal{A}^{[]}$ obtained from \mathcal{A} by formally adding shifts of objects:

 $Ob \mathcal{A}^{[]} = Ob \mathcal{A} \times \mathbb{Z}, \qquad \mathcal{A}^{[]}((X, n), (Y, m)) = \mathcal{A}(X, Y)[m - n].$

 ${\mathcal A}$ embeds as a full $A_\infty\text{-subcategory}$ into ${\mathcal A}^{[]}$ via

$$u: \mathcal{A} \hookrightarrow \mathcal{A}^{[]}, \qquad X \mapsto (X, 0).$$

Definition. A unital A_{∞} -category \mathcal{A} is called **closed under shifts** if u is an A_{∞} -equivalence.

Equivalently, each object (X, n) of $\mathcal{A}^{[]}$ is isomorphic in $H^0(\mathcal{A}^{[]})$ to an object of the form (Y, 0).

Example. Pretriangulated A_{∞} -categories (to be defined by V. Lyubashenko) are closed under shifts.

Main theorem

As above, assume that \Bbbk is a field.

- **Theorem.** (1) If $S : \mathcal{A} \to \mathcal{A}$ is a right Serre A_{∞} -functor, then the induced functor $H^0(S) : H^0(\mathcal{A}) \to H^0(\mathcal{A})$ is an ordinary right Serre functor.
 - (2) Conversely, suppose that \mathcal{A} is closed under shifts and that $H^0(\mathcal{A})$ admits a right Serre functor $\overline{S} : H^0(\mathcal{A}) \to H^0(\mathcal{A})$. Then there exists a right Serre A_{∞} -functor $S : \mathcal{A} \to \mathcal{A}$ such that $H^0(S) = \overline{S}$.

Example. By results of Drinfeld, we know that $D^b(\operatorname{Coh}_X)$ is of the form $H^0(\mathcal{A})$, where \mathcal{A} is the dg quotient of the dg category of complexes of coherent sheaves over the full dg subcategory of acyclic complexes. Therefore, the Serre functor $S = - \otimes \omega_X[n]$ lifts to a Serre A_∞ -functor $\mathcal{A} \to \mathcal{A}$.