Dyson-Schwinger equations for the auxiliary field formulation of the O(N) model

András Patkós, Inst. of Phys., Eötvös Univ.

Zsolt Szép, Solid State Inst. of Hung. Acad. Sci.

Plan of the talk:

- The auxiliary field formulation to $\mathcal{O}(1/N)$ accuracy: Hubbard-Stratonovich transformation, **Dyson-Schwinger equations**
- The leading order (LO) solution and its use at NLO: The coupled propagator matrix of the σ and the auxiliary fields Goldstone's theorem
- Curious behavior of the massive excitations in the "hybrid-inflation" field model at $N = \infty$

The Lagrangian:

$$2L = (\partial_i \varphi_n(x))^2 - m^2 \varphi_n(x)^2 - \frac{\lambda}{12N} (\varphi_n(x)^2)^2$$
$$= (\partial_i \varphi_n(x))^2 - m^2 \varphi_n(x)^2 - \alpha(x)^2 + i \sqrt{\frac{\lambda}{3N}} \alpha(x) \varphi_n(x)^2$$

Saddle point of α and symmetry breaking shift in φ_n :

$$\alpha \to \alpha + i \sqrt{\frac{3N}{\lambda}} M^2 \qquad \varphi_1 \equiv \sigma + v \sqrt{N}, \quad \varphi_{n \neq 1} \equiv \pi_n,$$

Classical equations of motions (EOM)

$$\frac{\delta S}{\delta \sigma(x)} = -(\Box + m^2 + M^2)\sigma(x) - (m^2 + M^2)\sqrt{N}v + i\alpha\sqrt{\frac{\lambda}{3N}}(\sigma(x) + \sqrt{N}v)$$
$$\frac{\delta S}{\delta \pi_n(x)} = -\left(\Box + m^2 + M^2 + i\alpha\sqrt{\frac{\lambda}{3N}}\right)\pi_n(x)$$
$$\frac{\delta S}{\delta \alpha(x)} = -\alpha - i\sqrt{\frac{3N}{\lambda}}M^2 + \frac{i}{2}\sqrt{\frac{\lambda}{3N}}(\sigma^2 + 2\sigma\sqrt{N}v + Nv^2 + \pi_n^2).$$

Dyson-Schwinger equations up to NLO: $\frac{\delta\Gamma}{\delta\phi_U} = \frac{\delta S}{\delta\phi_U} \left[\phi_A + G_{AB} \frac{\delta}{\delta\phi_B} \right]$

$$\frac{\delta\Gamma}{\delta\sigma(x)} = -(\Box + m^2 + M^2)\sigma(x) - (m^2 + M^2)\sqrt{N}v + i\sqrt{\frac{\lambda}{3N}}(\alpha\sigma(x) + G_{\alpha\sigma}(x, x) + \alpha\sqrt{N}v) = 0, \frac{\delta\Gamma}{\delta\alpha(x)} = -\alpha - i\sqrt{\frac{3N}{\lambda}}M^2 + \frac{i}{2}\sqrt{\frac{\lambda}{3N}}(\sigma^2 + G_{\sigma\sigma}(x, x) + 2\sigma\sqrt{N}v + Nv^2 + \pi_n^2 + (N-1)G_{\pi\pi}(x, x)) = 0.$$

Equation of state (EoS) and gap equation:

$$-\sqrt{N}v\left(m^2 + M^2 - \frac{i}{Nv}\sqrt{\frac{\lambda}{3}}G_{\alpha\sigma}(x,x)\right) = 0,$$

$$\frac{\lambda}{6}(v^2 + G_{\pi\pi}(x,x)) + \frac{\lambda}{6N}(G_{\sigma\sigma}(x,x) - G_{\pi\pi}(x,x)) = M^2.$$

DS-equations for the propagators:

$$iG_{\sigma\sigma}^{-1}(x,y) = iD_{0}^{-1}(x,y) - \sqrt{\frac{\lambda}{3N}}G_{\alpha\phi_{a}}(x,z_{1})G_{\sigma\phi_{b}}(x,z_{2})\Gamma_{\phi_{a}\phi_{b}\sigma}^{3}(z_{1},z_{2},y),$$

$$iG_{\sigma\alpha}^{-1}(x,y) = i\sqrt{\frac{\lambda}{3}}v\delta(x-y) - \sqrt{\frac{\lambda}{3N}}G_{\alpha\phi_{a}}(x,z_{1})G_{\sigma\phi_{b}}(x,z_{2})\Gamma_{\phi_{a}\phi_{b}\alpha}^{3}(z_{1},z_{2},y),$$

$$iG_{\alpha\alpha}^{-1}(x,y) = -\delta(x-y) - \sqrt{\frac{\lambda}{12N}} \Big[G_{\sigma\phi_{a}}(x,z_{1})G_{\sigma\phi_{b}}(x,z_{2}) + G_{\pi_{n}\phi_{a}}(x,z_{1})G_{\pi_{n}\phi_{b}}(x,z_{1})\Big]\Gamma_{\phi_{a}\phi_{b}\alpha}^{3}(z_{1},z_{2},y),$$

where $iD_0^{-1}(x, y) = -(\Box + m^2 + M^2)\delta(x - y)$

3-point functions at LO are classical (tree level local expressions):

$$\Gamma^{3}_{\alpha\sigma\sigma}(x,y,z) = i\sqrt{\frac{\lambda}{3N}}\delta(x-y)\delta(x-z),$$

$$\Gamma^{3}_{\alpha\pi_{n}\pi_{m}}(x,y,z) = i\sqrt{\frac{\lambda}{3N}}\delta_{nm}\delta(x-y)\delta(x-z)$$

Explicit final form

$$\begin{aligned} G_{\sigma\sigma}^{-1}(x,y) &= D_0^{-1}(x,y) - \frac{\lambda}{3N} (G_{\alpha\alpha}(x,y)G_{\sigma\sigma}(x,y) + G_{\sigma\alpha}^2(x,y)), \\ G_{\sigma\alpha}^{-1}(x,y) &= \sqrt{\frac{\lambda}{3N}} v \delta(x-y) - \frac{\lambda}{3N} G_{\sigma\alpha}(x,y) G_{\sigma\sigma}(x,y), \\ G_{\alpha\alpha}^{-1}(x,y) &= i \delta(x-y) - \frac{\lambda}{6N} (G_{\sigma\sigma}^2(x,y) + (N-1)G_{\pi\pi}^2(x,y)), \\ G_{\pi\pi}^{-1}(x,y) &= D_0^{-1}(x,y) - \frac{\lambda}{3N} G_{\alpha\alpha}(x,y) G_{\pi\pi}(x,y). \end{aligned}$$

EoS: LO $G_{\alpha\sigma}$ determines the $\mathcal{O}(1/N)$ correction:

$$G_{\alpha\sigma}(x,x) = -\sqrt{\frac{\lambda}{3}}v \int \frac{d^4p}{(2\pi)^4} \frac{1}{\left(1 + \frac{\lambda}{6}I(p)\right)(p^2 - m^2 - M^2) - \frac{\lambda}{3}v^2}$$

 $I(p) = i \int D_0(q) D_0(p-q) d^4 q / (2\pi)^4$

Similar formulae for $G_{\sigma\sigma}$ and $G_{\alpha\alpha}$

NLO demonstration of Goldstone's theorem EoS:

$$-\sqrt{N}v\left[m^2 + M^2 + \frac{i\lambda}{3N}\int \frac{d^4p}{(2\pi)^4} \frac{1}{\left(1 + \frac{\lambda}{6}I(p)\right)\left(p^2 - m^2 - M^2\right) - \frac{\lambda}{3}v^2}\right] = 0$$

Pion propagator:

$$iG_{\pi\pi}^{-1}(q) = q^2 - m^2 - M^2 - \frac{i\lambda}{3N} \int \frac{d^4p}{(2\pi)^4} \frac{1}{(q-p)^2 - m^2 - M^2} \\ \times \frac{p^2 - m^2 - M^2}{\left(1 + \frac{\lambda}{6}I(p)\right)\left(p^2 - m^2 - M^2\right) - \frac{\lambda}{3}v^2}$$

At q = 0 by EoS: $-iG_{\pi\pi}(0) = 0$

Formal equations for the determination of M^2 and v^2 agree with the result of direct Dyson-Schwinger construction (see Zsolt Szép's talk)

Hybrid inflation model at large N

 Φ : O(N)-singlet scalar coupled to φ_n , n = 1, ..., N: N-component Higgs-field:

$$L = \frac{1}{2}\partial^{\mu}\Phi\partial_{\mu}\Phi - \frac{1}{2}m_{\Phi}^{2}\Phi^{2} + \frac{1}{2}\partial^{\mu}\varphi_{n}\partial_{\mu}\varphi_{n} - \frac{1}{2}m^{2}\varphi_{n}^{2} - \frac{\lambda_{1}}{24N}(\varphi_{n}^{2})^{2} - \frac{\lambda_{2}}{12N}\Phi^{2}\varphi_{n}^{2}.$$

"Diagonalisation" of the quartic part of the potential:

$$\lambda_{1}(\varphi_{n}^{2})^{2} + 2\lambda_{2}\varphi_{n}^{2}\Phi^{2} = \lambda_{+}(\psi_{+}^{2})^{2} + \lambda_{-}(\psi_{-}^{2})^{2},$$

$$\lambda_{\pm} = \frac{1}{2} \left(\lambda_{1} \pm \sqrt{\lambda_{1}^{2} + 4\lambda_{2}^{2}}\right), \qquad \psi_{\pm}^{2} = u_{\pm}\varphi_{n}^{2} + v_{\pm}\Phi^{2}$$

$$u_{+} = v_{-} = \frac{\lambda_{+}}{\sqrt{\lambda_{+}^{2} + \lambda_{2}^{2}}}, \qquad v_{+} = -u_{-} = \frac{\lambda_{2}}{\sqrt{\lambda_{+}^{2} + \lambda_{2}^{2}}}$$

Hubbard-Stratonovich transformation with two fields (α , β) :

$$L_I = -\frac{1}{2}(\alpha^2 + \beta^2) + i\alpha\sqrt{\frac{\lambda_+}{12N}}(u_+\varphi_n^2 + v_+\Phi^2) + i\beta\sqrt{\frac{\lambda_-}{12N}}(v_-\Phi^2 + u_-\varphi_n^2)$$
$$\alpha \to \alpha + i\sqrt{3N/\lambda_+}m_+^2, \qquad \beta \to \beta + i\sqrt{3N/\lambda_-}m_-^2.$$

LO solution in the broken symmetry phase

$$m_{+}^{2}u_{+} + m_{-}^{2}u_{-} + m^{2} = 0,$$

$$-\sqrt{\frac{3N}{\lambda_{+}}}m_{+}^{2} + \sqrt{\frac{\lambda_{+}N}{12}}u_{+}(v^{2} + G_{\pi\pi}) = 0,$$

$$-\sqrt{\frac{3N}{\lambda_{-}}}m_{-}^{2} + \sqrt{\frac{\lambda_{-}N}{12}}u_{-}(v^{2} + G_{\pi\pi}) = 0$$

equivalent to the **EoS**:

$$m^{2} + \frac{1}{6}(\lambda_{+}u_{+}^{2} + \lambda_{-}u_{-}^{2})(v^{2} + G_{\pi\pi}) = 0$$

The inverse propagators:

$$iG_{\pi_n\pi_m}^{-1}(x,y) = -\delta_{nm}(\Box + m^2 + m_+^2 u_+ + m_-^2 u_-)\delta(x-y),$$

$$iG_{\Phi\Phi}^{-1}(x,y) = -(\Box + m_{\Phi}^2 + m_+^2 v_+ + m_-^2 v_-)\delta(x-y)$$

Goldstone'theorem is fulfilled

The matrix of the coupled $\sigma - \alpha - \beta$ sector

$$G_{[\sigma,\alpha,\beta]}^{-1} = \begin{vmatrix} -ip^2 & \sqrt{\frac{\lambda_+}{3}}u_+v & \sqrt{\frac{\lambda_-}{3}}u_-v \\ \sqrt{\frac{\lambda_+}{3}}u_+v & i(1+\lambda_+u_+^2I(p)/6) & 0 \\ \sqrt{\frac{\lambda_-}{3}}u_-v & 0 & i(1+\lambda_-u_-^2I(p)/6) \end{vmatrix}$$

The determinant condition for the σ mass M_{σ}^2 :

$$M_{\sigma}^{2} \left(1 + \frac{\lambda_{+}}{6} u_{+}^{2} I(M_{\sigma}) \right) \left(1 + \frac{\lambda_{-}}{6} u_{-}^{2} I(M_{\sigma}) \right) - \frac{v^{2}}{3} \left[\lambda_{-} u_{-}^{2} \left(1 + \frac{\lambda_{+}}{6} u_{+}^{2} I(M_{\sigma}) \right) + \lambda_{+} u_{+}^{2} \left(1 + \frac{\lambda_{-}}{6} u_{-}^{2} I(M_{\sigma}) \right) \right] = 0$$

Non-perturbative renormalisation

for three convenient combinations of λ_1 and λ_2 and m^2 :

$$\frac{1}{\lambda_{\pm}u_{\pm}^2} = \frac{1}{(\lambda_{\pm}u_{\pm}^2)_R} + \frac{1}{96\pi^2}\log\frac{\Lambda^2}{\mu^2}, \quad \frac{m^2}{\lambda_{\pm}u_{\pm}^2 + \lambda_{-}u_{-}^2} + \frac{\Lambda^2}{96\pi^2} = \left(\frac{m^2}{\lambda_{\pm}u_{\pm}^2 + \lambda_{-}u_{-}^2}\right)_R$$

Increased freedom to tune the mass scales of the model:

$$v^2 = \left(\frac{6m^2}{\lambda_+ u_+^2 + \lambda_- u_-^2}\right)_R,$$

$$M_{\sigma}^{2} = \frac{v^{2}}{3} \left[\frac{1}{\frac{1}{(\lambda_{+}u_{+}^{2})_{R}} + \frac{I_{R}(M_{\sigma})}{6}} + \frac{1}{\frac{1}{(\lambda_{-}u_{-}^{2})_{R}} + \frac{I_{R}(M_{\sigma})}{6}} \right]$$

The definition of the renormalised "inflaton" mass:

$$M_{\Phi R}^2 = m_{\Phi R}^2 + (\lambda_+ u_+ v_+ + \lambda_- u_- v_-)_R v^2$$

Case of maximal inflaton-Higgs mixing:

$$\lambda_2 \gg \lambda_1: \quad u_+ = -u_- = v_+ = v_- = \frac{1}{\sqrt{2}}$$

$$\lambda_{+}u_{+}^{2} \to \frac{\lambda_{2}}{2}, \qquad \lambda_{-}u_{-}^{2} \to -\frac{\lambda_{2}}{2},$$
$$\lambda_{+}u_{+}^{2} + \lambda_{-}u_{-}^{2} \to \lambda_{1}, \qquad \lambda_{+}u_{+}v_{+} + \lambda_{-}u_{-}v_{-} \to \lambda_{2}$$

Simplified formulae for the mass scales:

$$M_{\sigma}^{2} \approx \frac{v^{2}}{3} \left[\frac{I_{R}(p^{2} = M_{\sigma}^{2})/3}{-4/\lambda_{2R}^{2} + (I_{R}(p^{2} = M_{\sigma}^{2})/6)^{2}} \right]$$

$$v^2 = \left(\frac{6m^2}{\lambda_1}\right)_R$$

$$M_{\Phi}^2 = m_{\Phi,R}^2 + \lambda_{2R} v^2$$

Sigma (Higgs) and inflaton scales: governed by λ_2

Condensate amplitude: governed by λ_1

Mass-spectra separated from the condensate (which would determine fermion and vector-boson masses if embedded into a gauge theory)

CONCLUSIONS (work to be done)

- NLO renormalisation, including auxiliary field renormalisation
- Treatment of SU(N) symmetric Higgs model at $N \to \infty$
- Extension of the model by a scalar interacting with the Higgs fields bilinearly
- Could this be a minimal extension of SM without destroying EWPT presision tests still increasing the allowed Higgs-scale?