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Heavy quarks as a probe of a new state of matter

(research proposal at Los Alamos)

properties of the matter created at RHIC studied using charm and beauty heavy
quarks as clean probes −→ silicon micro-vertex detector with very good spatial

resolution required

heavy quarks live much longer than the duration of the QGP and travel
macroscopic distances away from the creation point

lifetime of charm and beauty is ∼ 1ps and their decay in muons detected by the
PHENIX muon detector

longer lifetime of beauty particles and higher momentum of muons from their
decays −→ separation of charm and beauty possible

Experimental setting used to answer pressing questions like:

– are the interactions in the plasma so strong that heavy quarks are quickly
equilibrated and exhibit hydrodynamic flow?

– do heavy quark bound states dissociate in QGP at extreme pressure and
temperature?

– what is the mechanism of energy loss for heavy quarks in the plasma?
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The importance of the soft physics

existing hydrodynamic models assume that the fireball, which is initially far from
thermodynamic equilibrium reach perfect thermalization within 1fermi/c, some 5 -
7 times faster than expected by estimates based on hard scattering processes
−→ softer collective processes are necessary to account for the apparent
success of the hydro models

the rapid thermalization time and short mean free path for the quasi-particle
excitations indicate that the new state of matter at RHIC behaves more like a
liquid rather than a gas of quarks and gluons
→ computation of the transport coefficients (viscosity, conductivity and diffusion)
is important
→ the goal is to include non-perfect fluid therms into hydro models and compare
with the experimental data on elliptic flow

particles become “dressed” when they propagate in a medium =⇒ studying the
quasi-particles by looking at the analytical structure of the corresponding thermal
propagators one can tell something about the properties of the medium

theoretically, one can try to calculate analytically properties of bound states
(mass, width, decay constant) versus the temperature and compare them to
those determined by a lattice QCD simulation from the spectral functions
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The problem of gauge independence

this is about, “how to extract physical quantities from the expectation values of
gauge variant operators” using perturbation theory

R. Kobes, G. Kunstatter, A. Rebhan, NPB355, 1 (1991)

in abelian gauge theory
– photon self-energy is purely transverse and gauge independent to all orders
– the fermion self-energy is gauge-fixing dependent

in non-Abelian theories the gauge boson propagator is also gauge dependent

However, it is possible to obtain gauge-independent physical information from a
gauge dependent quantity R. Kobes, G. Kunstatter, A. Rebhan, PRL25, 2992 (1990)

it has been shown from general principles (functional techniques + DS equation)
that in a consistent resummation the singularity structure of certain components
of the gauge propagators (zeros of the determinants, that is the dispersion
relations) are gauge-independent

How to find a consistent resummation?
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Hard thermal loop resummation

E. Braaten and R. D. Pisarski, NPB 337, 569 (1990)

triggered by the problem of finding a gauge independent soft gluon damping rate

explicit one-loop level calculations at finite T performed by many people in
different gauges have shown that both the sign and the magnitude of the soft
gluon damping rate are gauge dependent

Pisarski and Braaten have shown both in covariant and in Coulomb gauges that
the complete resummation of (hard thermal) loop effects results in
gauge-fixing-independent dispersion relations

They not only gave the correct expression of the gluon damping rate but found all
those one-loop n-point functions which are the same order as the tree-level ones
and constructed the generating functional for them: the so-called HTL action.
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The soft fermion dispersion relation at 1-loop level

the high-T approximation of the weakly coupled QED is characterized by
- large mean field path
- big separation of scales (perturbation theory accurate) hard: O(T ), soft: O(eT )

for static fermion (q = 0) one has to solve q0 = Σ(q0,q = 0) with q0 = M − iγ

1. LO calculation of Σ

Σ(Q) = − Q

Q−K

K

Q ≈ −e2
∫

d4k
(2π)4

γµ( /K + /Q)γµ∆(K)∆̃(Q+K)

≈ 2e2γ4

∫
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4E2
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)
-(f1+f̃2)

(
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)]
+2e2γi

∫
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k̂i
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- 1
iω+E1+E2

)
+(f1+f̃2)

(
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E1=k, E2=|q-k|≈k-q cos θ, f̃2≈f̃(k), iω+E1-E2≈iω+q cos θ=Q · K̂, K̂=(−i, k̂)

Σ(Q)
∣∣
LO = e2

2π2

∫ ∞

0

dkk(f(k) + f̃(k))︸ ︷︷ ︸
π2T 2/4

∫
dΩ
4π
−γ4i+γik̂i

Q·K̂ , dΩ = d(cos)θdφ

gauge-independent result : Σ(Q)
∣∣
LO = e2T 2

8

∫
dΩ
4π

/K
Q·K̂



6eff. action giving the correct electron propagator S̃ = ψ̄Σψ = e2T 2

8

∫
dΩ
4π ψ̄

/K
∂·K̂ψ

with ∂µ → Dµ = ∂µ − ieAµ =⇒ S̃HTL = e2T 2

8

∫
dΩ
4π ψ̄

/K
D·K̂ψ =:

∞∑
N=2

ψ̄δΓ̃NAN−2ψ

S̃HTL is the generator of the hard thermal loops δΓ̃N between an electron pair
and any number of photons

solution of the dispersion relation:

ΣLO(ω, 0) = lim
q→0

[
e2T 2

16q
ln

∣∣∣∣ω + q

ω − q

∣∣∣∣− i
π

2
Θ(q2 − ω2)

]
−→ MLO =

eT√
8

, γLO = 0

1. NLO calculation for ξ=1 everything kept and done for RΣ term ∼ with -iγ4

Σ0
∣∣
NLO=2e2

∫
k

1
4E1

[
(1+f1-f̃2)

(
1

iω-E1-E2
+ 1

iω+E1+E2

)
+(f1+f̃2)

(
1

iω+E1-E2
+ 1

iω-E1+E2

)]
at q = 0 one has E1 = E2 = k for the real part iω → ω

→ e2

2π2ω

∫ ∞

0

k(f(k) + f̃(k))︸ ︷︷ ︸
π2T 2/4

−e2ω
8π2 P

∫ ∞

0

dk
k

k2 − p2
0/4

(f(k)− f̃(k))︸ ︷︷ ︸
2f(2k)︸ ︷︷ ︸

− ln(T/p0)

= e2T 2

8ω + e2ω
8π2 ln T

ω



7The complete 1-loop ξ,q-dependent calculation at NLO in the HTE done in
I. Mitra, PRD62 (2000) 045023
S.-Y. Wang, PRD70 (2004) 065011

real part
real and imaginary parts

RΣNLO(ω, 0) =
e2ωξ

8π2
ln
T

ω

IΣNLO(ω, 0) = −e
2T

16π
(3ξ − 1)

−→
M 1loop

NLO =
e3Tξ

8
3
2π2

ln
1
e

γ1loop
NLO =

e2T

16π
(3ξ − 1)

the result in a covariant Rξ gauge is gauge-parameter dependent → some sort
of resummation is needed

What to resum?
What is the lowest set of graphs which gives contribution of the same order?
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A first conjecture made on dimensional grounds by E. Mottola

The guessed/predicted form of the self-energy for soft, static electrons

Σ(q0) =
eT 2

8q20︸︷︷︸
LO HTL

+ c1e
2q0 ln

T

q0
− id1e

2T︸ ︷︷ ︸
1-loop NLO HTL

+ c2
e4T 2

q0
ln
T

q0
− id2

e4T 3

q20︸ ︷︷ ︸
2-loop NLO HTL

at NLO HTL one solves the equation for the dispersion relation iteratively

using the LO result MLO =
eT√

8
, γLO = 0, to obtain

MNLO =
e3T√

8
(c1 + 8c2) ln

√
8
e
, γNLO = (d1 + 8d2)e2T.

Expectation: ξ-dependence of M and γ cancels with the inclusion of the 2-loop
NLO HTL terms

Conclusion of a 2-loop calculation done in RTF was presented at the SEWM06
c2 = 1−ξ

64π2 −→ at least the fermion mass is gauge invariant beyond LO in the HTL
approximation Carrington & Mottola, NPA785, 142c (2007)

but a scrutiny of the calculation reveals a severe problem of the result
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2-loop finite temperature calculation
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Method: - imaginary time formalism
- spectral representation for the propagators ∆(iωn,k) =

∫∞
−∞

dk0
2π

ρ(k0,k)
k0−iωn

- Gaudin’s method for performing Matsubara sums
M. Gaudin, Nuov. Cim.38 (1965) 84, (see also J.-P. Blaizot, et al. NPA764 (2006) 393)

Advantages of the method – no need for 7 3-point, 15 4-point vertices as in RTF
– no need for contour integration, instead:

• specify the orientation of lines, affect to each line a label k and a number τk = kθ

• decompose the graph in trees: T is a connected set of lines of the original graph
which joins all the vertices and contains no loop

N∏
i=1

eiωiτi

p0
i − iωi

= eiωTe
∑
T

∏
j∈T

1
p0

j − iΩj(iω, p0
l )

∏
l∈T̄

eiωlTl

p0
l − iωl

sample tree

1
the complement of the tree, T̄ carries the independent frequencies ωl

the frequency of each line of T , Ωj is expressed in terms of ωl and external ω
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• let θ → 0 and for each tree do the summation over indep. frequencies ωl using

T
∑

n

eiωlTl

p0 − iωl
= ±ε(Tl)f±(ε(Tl)p0)ep0Tl +: ωl bosonic (2πnT ) − : ωl fermionic

The decomposition formula is a generalization of the partial fractioning

bubble ω = ωn + ωm

eiωnτn

p0 − iωn

eiωmτm

q0 − iωm
=

1
p0 + q0 − iω

[
eiωτmeiωn(τn−τm)

p0 − iωn
+
eiωτneiωn(τm−τn)

q0 − iωm

]
setting sun ωn + ωm + ωr = 0

eiωnτn

p0 − iωn

eiωmτm

q0 − iωm

eiωrτr

r0 − iωr
=

1
p0 + q0 + r0

[
eiωn(τn−τr)eiωm(τm−τr)eiωτr

(p0 − iωn)(q0 − iωm)

+
eiωn(τn−τm)eiωr(τr−τm)eiωτm

(p0 − iωn)(r0 − iωr)
+
eiωm(τm−τn)eiωr(τr−τn)eiωτn

(q0 − iωm)(r0 − iωr)

]



11Performing the Matsubara sums for the crossed-rainbow diagram

Σcr(iω, q) = −e
4

Z
k,p

0@ 5Y
i=1

Z
dp0

i

2π

1A γαρF (p3)γµρF (p5)γνρ
να

(p1)ρF (p2)γβρ
βµ

(p4)T
2

X
n,m

5Y
i=1

1

p0
i − iωi

.

p1 = p, p2 = q − k, p3 = q − p, p4 = k, p5 = q − p− k

Trees:

T
2

X
n,m

5Y
i=1

1

p0
i − iωi

=

(−f(−p0
1))(−f̃(p0

2))

(p0
3 + p0

1 − iω)(p0
4 + p0

2 − iω)(p0
5 + p0

1 − p0
2)

+
(−f̃(p0

3))(−f(−p0
4))

(p0
1 + p0

3 − iω)(p0
2 + p0

4 − iω)(p0
5 + p0

4 − p0
3)

+

(−f̃(p0
2))(−f̃(p0

3))

(p0
1 + p0

3 − iω)(p0
4 + p0

2 − iω)(p0
5 − p0

2 − p0
3 + iω)

+
(−f(−p0

1))(−f(−p0
4))

(p0
2 + p0

4 − iω)(p0
3 + p0

1 − iω)(p0
5 + p0

1 + p0
4 − iω)

+

(−f(−p0
1))(−f̃(p0

5))

(p0
2 − p0

1 − p0
5)(p

0
3 + p0

1 − iω)(p0
4 + p0

1 + p0
5 − iω)

+
(−f̃(p0

3))(−f̃(p0
5))

(p0
1 + p0

3 − iω)(p0
2 + p0

3 − p0
5 − iω)(p0

4 + p0
5 − p0

3)
+

(−f̃(p0
2))(−f̃(p0

5))

(p0
1 + p0

5 − p0
2)(p

0
3 + p0

2 − p0
5 − iω)(p0

4 + p0
2 − iω)

+
(f(p0

4))(−f̃(p0
5))

(p0
1 + p0

4 + p0
5 − iω)(p0

2 + p0
4 − iω)(p0

3 − p0
4 − p0

5)
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Findings

– soft-hard pattern: same order contribution as at NLO in the 1-loop case
occurs when one loop momentum is soft and the other is hard

RΣcr(ω,q = 0)
∣∣
LO = − e4

ωπ4

∫ ∞

0

dk k(f(k) + f̃(k))︸ ︷︷ ︸
hard, π2T 2/4

∫ ∞

0

dp(f(p)− f̃(p))
p

ω2 − 4p2︸ ︷︷ ︸
soft, 4−1 ln(T/ω)

= − e4T 2

16π2ω
ln
T

ω

IΣsc
cr (ω,q = 0)

∣∣
LO =

e4

8π3ω

∫ ∞

0

dkk(f(k) + f̃(k))︸ ︷︷ ︸
hard, π2T 2/4

[
f

(ω
2

)
− f̃

(ω
2

)]
︸ ︷︷ ︸

soft, 2f(ω)

=
e4T 2

16πω
f(ω) ≈ e4T 3

16πω2

RΣr(ω,q = 0)
∣∣
LO = 0, IΣr(ω,q = 0)

∣∣
LO = − e4T 3

32πω2

– the collinear divergences (k̂ · p̂ = ±1) are either subleading in the HTE or
miraculously cancel in the real and imaginary part of the crossed-rainbow and
rainbow diagrams



13– IR and collinear divergences in the real part of the bubble diagram
RΣb(ω,q = 0)

∣∣
LO ∼

e4T 2

ω
ω2

m2 ln T
ω order is changed when the IR regulator m ∼ eT

IR divergence indicates that resummation of the photon propagator is necessary
– collinear divergences in the imaginary part of the bubble diagram

IΣb(ω,q = 0)
∣∣
LO ∼

e4T 3

ω2
ω2

m2 the order is not changed with m ∼ eT

How does m enter the game?
As a regulator in the problem
of double poles.

����
���

indep. freq.→thin line→ thermal prop.→δ(k2
0-k2)

dep. freq.→thick line→T=0 prop.→ 1
k2
0−k2±iε

=⇒ R δ(k2
0−k2)

k2
0−k2±iε

is singular

Solution: representation δ(x)= ε
π

1
x2+ε2

coming from 2πiθ(x)= ln(-x+iε)- ln(-x-iε)

one can derive: δ(k2
0−k2)

k2
0−k2±iε

= −1
2

∂
∂k2

0
δ(k2

0 − k2)∓ iπ[δ(k2
0 − k2)]2.

better to use the prescription:
∂2

∂k2
0

δ(k
2
0-k2

)= lim
m2→0

∂

∂k2
0

δ(k
2
0-k2-m2

)=- lim
m2→0

∂

∂m2
δ(K

2-m2
)
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Conjecture for resummation based on the calculation at ξ = 1

the lowest set of diagrams to be resummed contains
– a chain of 1-loop HTL fermion bubble insertions in the photon propagator
– a chain of 1-loop HTL photon-electron bubble insertions in the electron prop.
– could have HTL corrected photon-electron vertex

that is, one has to calculate an 1-loop diagram with HTL corrected propagators
and vertices

Check: cancellation of the ξ-dependence

calculation done by M. E. Carrington in PRD 75, 045019 (2007)
but without explaining why this is the path one has to take after SEWM06 (which
led to a wrong conclusion)

we have now a better understanding of why this is the needed resummation



15What is the relevance of this calculation?

still debated by the authors

clarifies some issues and explicitly shows which are the NLO corrections in the
HTE which comes by evaluating singular integrals and cannot be guessed by
simple power counting (e. g. no NLO from a 2-loop diagram with two hard
momenta as stated in Le Bellac’s book, because of the IR and collinear
divergences one cannot even guess the correct order of the diagram)

Dreams

• generalization to the q 6= 0 case
• identification of the quasi-particles - needed to understand the equation of state
• construction of the effective action - path to non-equilibrium studies
• calculation of conductivity, viscosity (Kubo formula) at NLO HTL
• generalization of the procedure to QCD


