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Abstract

In this article, we give the generalization of the Grothendieck construction for
pseudo functors given in [5], which provides a biequivalence between the 2-categories of
pseudofunctors and fibrations. We define the second Grothendieck construction which
to any pseudo 2-functor associates a 2-fibration, defined by Hermida [6], and we prove
the biequivalence between the 2-category of pseudo 2-functors and the 2-category of
2-fibrations.

1 Introduction

Throughout many areas of mathematics, we are repeatedly faced with two kinds of descrip-
tions of mathematical objects of interest. First, such objects may be described by having
certain property, and the formalism underlying this approach is given by the comprehen-
sion scheme of set theory, which says that given any property P, there is a set S, consisting
exactly of the elements having the property P. The most advanced form of this formalism
is the categorical comprehension scheme, given by Gray in [3], in order to avoid a clearly
strong dependence of such approach on the axiomatization of the set theory. The second
kind of description, is the one in which those properties are encoded as the part of the
structure of mathematical objects. The transition between this two approaches is given by
the axiom of choice. One of the central themes in the work of Grothendieck, deals with
this paradigm, where objects are characterized by certain universal properties, and after
the application of the axiom of choice, these properties give rise to coherence laws which
become the part of the structure of derived objects.

To illustrate all this by an example, we consider the Grothendieck construction, given
in [5], which for any category C, provides the biequivalence

J: PsF(C) — Fib(C)

between the 2-category PsF'(C) whose objects are pseudofunctors P: C°? — Cat, and the
2-category of fibrations (or fibered categories) F'ib(C) over C, also introduced in [5]. The
fibered category F': £ — C is the functor, which is characterized by the property which
associates to any pair (f, E), where f: X — Y is a morphism in C and F is an object in €



such that F(lz) = X, a cartesian morphism f: F — FE. having certain universal property,
such that F(f) = f. After we choose a cartesian lifting for each such pair, their universal
property gives rise to the coherence law for the natural transformations which are part of
the data for the obtained pseudofunctor. Moreover, for any pseudofunctor P: C? — Clat,
this coherence laws are precisely responsible for the associativity and unit laws of the
composition in the category fc P obtained from the Grothendieck construction.

In this article, we describe the generalization of the Grothendieck construction, for bi-
categories or weak 2-categories (in the language of Baez), which we therefore call the second
Grothendieck construction. More precisely, for any category bicategory B, we provide the
triequivalence

[+ Ps2F(B) — 2Fib(B)

between the 3-category Ps2F(B) whose objects are pseudo 2-functors P: B“? — 2 — Cat
(or equivalently homomorphisms of 3-categories given in [2]), and the 3-category of 2-
fibrations (or fibered 2-categories) 2F'ib(B) over B. The objects of the 3-category 2Fib(B)
are (weak) 2-functors F': £ — B, again characterized by the existence of cartesian liftings,
now for both I-morphisms and 2-morphisms. In the strict case, when both £ and B are
strict 2-categories, their definition is given by Hermida in [6]. Although he doesn’t define
explicitly 2-fibrations for bicategories, in his other article [7], he proposes their definition by
using the coherence for the bireflection of bicategories and their homomorphisms (or weak
2-functors) into (strict) 2-categories and (strict) 2-functors. Here we give their explicit defi-
nition, using the properties of certain biadjunctions given by Gray, in his monumental work
[4]. We prove that such 2-fibrations precisely arise by applying the second Grothendieck
construction to a general pseudo 2-functor, and that strict 2-fibrations correspond to strict
2-functors 2-functors P: B®“? — 2 — Cat.

One of the main motivations for this work, was to describe the second Grothendieck
construction as the interpretation theorem for the third nonabelian cohomology H?(B, K)
with the coefficients in the bundle of 2-groups K over the objects By of the bigroupoid
B. In the case of groupoids, this approach was taken in [1], where the second nonabelian
cohomology of groupoids, is defined by

H%(G,K) := [B, AUT(K)]

in which [G, AUT(K)] is the set defined in terms of connected components of pseudofunc-
tors P: G’ — AUT(K) to the full sub 2-groupoid of the 2-groupoid Gpd of groupoids,
induced naturally be the bundle of groups K over the objects G, of the groupoid G. The
Grothendieck construction here is an interpretation theorem for the classification of the
groupoid fibrations, seen as short exact sequences of groupoids

1 K G B 1

over the same underlying set of objects M, by means of the higher Schreier theory.



2 The 2-category of pseudo 2-functors

Definition 2.1. A pseudo 2-functor is a weak 3-functor F: B“P — 2 — Cat from the
(strict) 2-category B°P to the (strict) 3-category 2-Cat. It consists of the following data:

e a 2-category F(x), for every object x in B, which we also write Fy,

e a (weak) 2-functor F(f): F(y) — F(z), for any 1-morphism f: x — y in B, which
we abbreviate by f*: Fy — Fy,

e a pseudo natural transformation F(«): F(g) — F(f), for any 2-morphism a: f = g
in B, which we also write as o*: g* — f*, whose components are described by the

square
g (E) = f*(E)
g*(©) % ()
g*(F) —~ g (F)
F

for any 1-morphism e: E — F in F,, whose coherence is given by the diagram

g*(F)
g*(e) g*(e’)
| id
* E *
9°(E) w5 9(G)
* OL} o
Oé% \e/
@ [ (F) G
f*(e) fr(e)
| id
* E *
JUE) o 1()

for any composable pair of 1-morphisms F —— F LA G in the 2-category Fy,



e pseudo natural transformation

Fy

BQ 202
H /X ®
B i 2Cy

where By denotes the disjoint union of products of categories B(y,z) x B(z,y), in-
dexed by all triples of objects (x,y,z) in B, and the 2-functor Fy: By — 2Co sends
each product category B(y, z) x B(x,y) to the product of 2-categories [F(y), F(z)] x
[F(x), F(y)], of 2-functors, pseudo natural transformations and modifications. We
denoted by ®: 2Cy — 2Cy the composition of 2-functors, which restricts to the 2-
functor @: [F(y), F(z)] x [F(z), F(y)] — [F(z), F(z)], for any triple (x,y,z) of ob-

jects in B. Thus, for any object in Bo, which is just composable pair x N y sz

of 1-morphisms in B, we have a component x4 5: [*g* = (gf)" of the pseudo natural
transformation x, which is a 1-morphism in 2Cy, that is again a pseudo natural trans-
formation. Also, for any morphism in B, which is a just a horizontally composable

pair

f g

of 2-morphisms in B, we have a component Xg.a: ['9" == (g9f)* of the pseudo
natural transformation x, which is a 2-morphism in 2Cy, that is a modification. Thus,
the data for the pseudo natural transformation x, are given by the square

XU,k

ko (Ik)*

Oé*ﬁ* %,a (BOO&)*

I* *T(gf)*



The coherence for the pseudo natural transformation x is given by the diagram

E*1*
Ol*ﬁ* 7*5*
X1,k U/
id
19 60) olvay "
Xﬁﬂ &5;7
Xg, f (l o k)* Xn,m
(Boa)® (807)"
| id
(go ) ety (o™
and the coherence for the modification is given by the commutative cube
K1 (G) e (1k)*(G)
|
|
(a*oB%)a | G
(%Q)G |
: (1k)* (u)
k1% (u) 9" (G) % (9f)"(G)
| (Xg,k)G
|
@5y, i,
k*g* (u) J/ (gf)u
B(H) - - - - - - o () () (90
(Xl,k)H N
N
(B
(o081 (Boa) 3y \\
(X%,a)H N AN
\
frg*(H) ( (9.f)"(H)
Xg,k:)H



for any vertically composable pair of 2-morphisms

VAV
ANy

in the 2-category Bo.

It has components given by the square

976 — 22 (g (@)
*g*(p) (%f)p (gh)*(»)
[rg*(H) on (9f)"(H)

for any 1-morphism p: G — H in the 2-category F,, whose coherence is given by the



diagram
frg*(H)

g% (p) frg=(r)

(Xg,f)H

) id
fr9"(G) frg7(K)

f*g*(rp)

(o, v (g1

(9f)*(H)
(91" () (6f)*(r)
| id
) ) (9f)

(Xg,f)G (Xg,f)K

(9" (G

%

(gf)*(rp (K)

for any composable pair of 1-morphisms H-—LY>G-—">K in the 2-category F,
which means that the pasting of upper two squares is equal to the bottom square given
by the component (xg.f)rp: (Xg.f) K 9" (rp) = (Xg,1)a(9f)*(rp) (which we omitted
from the diagram too avoid too many labels), since the two triangles are given just by
identity 2-morphisms corresponding to two different strict 2-functors,

e for any composable triple x ! y- e hwoin B, a modification
. k1% I Xn, . .
frg*h : f*(hg)
Xg,f P u;gg,f Xhg, f
(9)*h* ——— (hg)



whose coherence is given by the commutative cube

(f*Xh,g) M

frg*h* (M) [ (hg)* (M)
(Xg.£h*)ar (w%,f)M (Xng,f)m
*g*h (m) (9.f)"h* (M) (hgf)*(M)
(Xn,gf)M
f*(hg)*(m)
Z/(f*Xh,g)m
5 m
(X ,gf)m
* k% (f*Xh,g)N % «
frg"h*(N) f*(hg)*(N) (hgf)*(m)
(9£)"h* (m) m
(Xg,rh*)N
(ng,f)N
(9.f)"h*(N) (hgf)*(N)
(Xh,gf)N

for any 1-morphism m: M — N in the 2-category F,,,

o for any 1-morphism f: x — y in B, two modifications
f* o Z;; ZZZ o f*

frona Kz nyof* Py, f

2 2

fr fr fr

such that following axioms are satisfied:



e the 3-cocycle condition given by a commutative cube

f*Xh,gk*

Xg,fh k" Xhg,fk*
wh%Jrk*
9" Xk,n (gf)*h*k* . (hgf) k"
Xh,gfk
"Xk hg
Z. f*gk,h,g
wg,h,gf
f*g*(k,h)* F*Xkn.g Xk,hgf
(9F)" Xk,n
Xg,f (kh)*
(9" (kh)" — (khg )"

e commutative pyramid
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3 2-fibrations

The following definition of biadjunction between two weak 2-functors is taken from [8].

Definition 3.1. A weak 2-functor F: B — C is called a left biadjoint to a weak 2-functor
G: C — B if there is an equivalence

C(F(?),—) = B(?,G(-))
in a 2-category Hom[B°?, Hom|C, Cat]|.

In the above definition, C(F'(?),—): B’ — Hom(C, Cat) is a weak 2-functor sending
each object z in B to the representable 2-functor C(F(x),—): C — Cat, and similary
B(?,G(-)): B°? — Hom(C,Cat) is a weak 2-functor sending each object x in B to the
weak 2-functor B(z,G(—)): C — Cat.

Let £ be a 2-category. The 2-category £~ of l-morphisms, associated to £ has 1-
morphisms of £ for objects, thus £~ = Ey. A l-morphism from f: 2z — y tog: 2z — w
is a triple (a,¢,b) consisting of 1-morphisms a: x — 2z, b: y — w and a 2-morphism
¢:goa = bo f as in the diagram

8

Y

w
b

and a 2-morphism from (a, ¢,b) to (c,1,d) is a pair (p,?) of 2-morphisms p: a = ¢ and
¥: b = d such that the diagram

(in which we have omitted ¢ in order to avoid too many labels) commutes.
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Definition 3.2. A weak 2-functor F': € — B is called a 2-fibration if there exist a 2-
functor L: (B, F) — £~ which is right biadjoint right inverse to the weak 2-functor S :=
(FI g9y £~ — (B, F).

The 2-functor S: £~ — (B, F) is then defined on any object a: p — ¢ of £, by
S(a) = (F(p), F(a),q). The existence of its right biadjoint right inverse L: (B, F) — £
means that for any object (z, f, q) in (B, F'), and any object g in £, we have an equivalence

Hom(B,F)(S(g)’ (LL‘, f7 Q)) ~ Homg— (g,L(ZE, fa Q))

of categories, which is pseudo natural in both variables.
Thus, for any object (z, f,q) in (B, F') where f: x — F(q) is a l-morphism in B, we

have L(z, f,q) = f, where f: f*(¢) — ¢ is a biuniversal 1-morphism in &,

Definition 3.3. Let F': £ — B be a weak 2-functor between bicategories. A 2-cleavage
consists of the following data:

o for each 1-morphism f:x — y in B, a 2-functor f*: &, — &, between the fibers,
and a pseudo natural transformation 0f: Jof* —= Ty , where Jy: €, — £ is an
inclusion 2-functor of the fiber 2-category &,,

e for each 2-morphism ¢: f = g in B, a modification Qy: 0y == 070"
such that following axioms hold:

o F'((0f)E) = f for each component of the pseudo natural transformation , indexed by
the object E in &,,

o F((Q)E) = ¢ for each component of the modification , indexed by the object E in
Ey.

Remark 3.1. The data for the 2-cleavage correspond precisely to the universal lax 3-cocone

which represent the bicategory £ as the lax 3-colimit of the lax 3-functor corresponding to
the 2-cleavage (where we omitted the pseudo natural transformation 64 from the back face).
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Definition 3.4. Let F': £ — B be a 2-functor.

o A I-morphism f: x1 — xo in £ is I-cartesian if it is cartesian for the underlying
functor of F'. This means that for any 1-morphism h: xg — x2 in £, such that there
exists a 1-morphism b: F(xg) — F(x1) in B, for which F(h) = F(f) o g, pictured by

-%;0 F(SEQ)

I
g: h F b F(h)

I

Al

IrN —— I (SU]_)WF(CCQ)

then there exists a unique 1-morphism g: xo — x1, such that h = fog and F(g) = b.

o A 1-morphism f: x1 — xo is 2-cartesian if it is 1-cartesian and if for any 2-morphism
¢: h="h"in&, and any 2-morphism B: b=V in B, such that F(¢) = F(f) o 3,

x0
\\\h i k
N g\
r1 J\ Z2 )

there exists a unique 2-morphism v: g = ¢', such that F(¢) = f o~ and F(v) = (.

Remark 3.2. The universal property for 2-cartesian 1-morphisms does not imply the uni-
versal property for 1-cartesian 1-morphisms. To see this, we take 2-cartesian f: x1 — o
1-morphism as above, and we consider a 1-morphism h: xo — x2 as the identity 2-
morphism. By the universal property for 2-morphisms, any 2-morphism (3: b = b for
which F(h) = F(f) o 8 gives a unique 2-morphism ~v: g = ¢, such that h = f o~ and
F(y) = B. But this gives two factorizations h = fog and h = f o g on the level of
1-morphisms.
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Definition 3.5. Let F': £ — B be a 2-functor.

o A 2-morphism o: f — f'in E is 1-cartesian if for any 2-morphism a: F(h) = f'og
in £, such that there exists a 2-morphism v: F(h) — F(f)ob in B, for which

F(xo) o F(x2) F(xo) o F(x2)
U/'Y F(f / \U/F(a)
7 E(o) _
b />ff> \ %
F(x1) F(x1)

then there exists a unique 2-morphism ¢: h — fog, such that o = (o 0 g)¢p, as in

T h T9 0 h To
il \ | /
g / 4 g 7
1 / 1
and F($) = 7.

o A 2-morphismo: f — f'is 2-cartesian if it is 1-cartesian and if its 1-target f': x1 —
To s 2-cartesian 1-morphism.

The following definition is given by Hermida in [6].

Definition 3.6. A (strict) 2-functor F: & — B is a 2-fibration if it satisfies following
conditions:

o for any pair (f,E), where f: x — y is a 1-morphism in B, and E is an object in &,
there exists a 2-cartesian 1-morphism f: f*(E) — E, such that F(f) = f,

e for any pair (¢, E), where ¢: f = g is a 2-morphism in B, and E is an object in &,
there exists a 2-cartesian 2-morphism ¢: f =g, such that F(¢) = ¢.

After we describe the universal properties of cartesian 1-morphisms and 2-morphisms
corresponding to 2-fibrations of bicategories, we will prove the following important char-
acterization.

Proposition 3.1. Let F': £ — B be a (weak) 2-functor between bicategories. Then F is a
2-fibration if and only if it has a 2-cleavage.
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4 The second Grothendieck construction

Given a pseudo 2-functor F: B — 2 — Cat as in the previous section, we will construct
a 2-category &, as a lax 2-colimit of F. It will be a total 2-category of the corresponding
2-fibration P: £ — B.

The objects of £ are pairs (x, E') where x is an object of B, and E is an object of the
2-category F'(x). A 1-morphism between two objects (z, E) and (y, F') is a pair

(f,a): (z,E) — (y,F)

such that f: z — y is a lI-morphisms in B, and m: E — f*(F') is a 1-morphism in F(x).
A 2-morphisms between two 1-morphisms (f,a) and (g,b) is a pair

(@, 0): (f,a) = (9,0)

such that a: f = g is a 2-morphisms in B, and ¢: a}.b = a is a 2-morphism in F(z)

g*(F)

Yo
E

f*(F)

where a}.: g*(F) = f*(F) is the component indexed by the object F in F(y), of the pseudo
natural transformation F(«): F(g) = F(f).

9 7b . .
For any composable pair (z, E) L) (y, F) o), (z,G) of 1-morphisms in £, we define

the composition (gf,ba) = (g,b)o(f,a) where gf:  — y is the composition of 1-morphisms
in B, and ba: E — (gf)*(G) is defined by the composition
f*(b) (Xg.f)c

E s fH(F) ———— " (G) — (9./)7(G)
and in the general case this composition will not be strictly associative (like in the oridnary
Grothendieck construction), unless the pseudo natural transformation x is strict natural
transformation. Thus, this composition will be coherently associative, and we define asso-
ciativity coherence for any three horizontally composable 2-morphisms in B,

15



L (g F) 0 (2.6) % (w0, H) of 1

morphisms in £, we have the composition (h(gf),c(ba)) = (h,c) o ((g,b) o (f,a)) where
h(gf): * — y is the composition of 1-morphisms in B, and c(ba): E — (h(gf))*(H) is
defined by the composition

E—2 £ (F) 2 prgn(6) X228 (0 1)) L (g py b () 22 (g ) ()

of 1-morphisms in the 2-category F. Since (hg, cb) = (h,c)o(g,b) where cb: F — (hg)*(H)
is given by the composition

as following. For any composable triple (z, E)

g*(c)

(Xh,g)H

F b g*(G) g*h*(H) (hg)*(H)

we have that ((hg)f, (cb)a) = ((h,c) o (g,b)) o (f,a) = (hg,cb) o (f,a) is given by the
composition

f7(cb) (Xhg,7)H

E fH(F)

which is equal to the composition

E—2m 12(F) L g2 (6) LD prgens () CRLe gye (1 2 () ) (1)

of 1-morphisms in the 2-category F,. The resulting two compositions ((hg)f, (cb)a) and
(h(gf),c(ba)), will generally not be equal, if two natural 2-morphisms in the diagram

f*(hg)*(H) ((hg) f)*(H)

a . % (b) . frg*(c) F(Xhg) i) 1y s

E f*(F) fror(a) ——2 (HY —"22L *(hg)* (H)
(Xg,f)G /(Xg,f)c (Xg’f)h*(H%(wh,g,f)H (th,f)H

(gf)*(G) (gf)*h*(H) ——— (hgf)*(H)

(9£)"(e)

are not identities, that is if y is not strict natural transformation and if the modifica-
tion w is not identity. The reason is that ((hg)f, (cb)a) is obtained by the composi-

(Xn,gf)H

*(b
tion of E —"= f*(F) ENON f*9*(G) with the top and right edges of the diagram, while
(h(gf),c(ba)) is obtained by the composition of the same 1-morphism with the left and bot-
tom edges of the diagram. We define the 2-morphism a.p 4: ((hg)f, (cb)a) = (h(gf), c(ba))

(b
by the pasting composite of the 1-morphism F —*= f*(F) ) f*g*(G) with the com-
ponent 2-morphisms in the interiors of the above diagram, or more explicitly

Acpa = ((Xh,gf)H o (Xg,f)c o f*(b) o a)((wfhg:f)H o f*g*(c)o f*(b) o a)

16



For vertical composition of any two 2-morphisms f—="=9 ="} in B

I
/N /7N
z g Y B T da Y
L% NS
h h
the vertical composition of two 2-morphisms (f,a) (a:> (g,b) m:¢> (h,c) in & is given
h*(F) h*(F)
c ol ¢
Yo
E —9'(F) ———— E Jo'e (@a)p
‘U'(bl
a allj: a
fH(F) fH(F)

by ¢'¢ == ¢'(affi 0 ¢).
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For any horizontally composable pair of 2-morphisms in B,
/Ji\ /\
k l

and for any two horizontally composable pair of 2-morphisms in £ which covers them

k*(F) I*(G)
y < Y B
|22 Yo
E /" (F) F 9" (G)

b

their horizontal composition ¢o¢: vu = ba is represented by the 2-morphism in the triangle

(k)*(G)

U

(Boa)g

I wos
E——>(9/)"(G)
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This horizontal composition is defined by the pasting composition of the diagram

K (@) (xi,k)a (16)*(G)
k*(v) * *
(k*oB*)g ”(XB,k)G (Bok)&

k= ()

k*(F k*g* (G k) (G

F) —=5 9(G) — 5.7 (9k)*(C)
u a /(Oé*)b (a*og®)a (Xo)c (goa)*G

|2
E Z P == 1797(G) —— = (9/)"(G)
which is equal to the pasting composition of the diagram
E v (R — ) N ()
2
a % Aa), (@ ol)e Ly, e |G
* f*(U) k ]k *
£o(F) FIG) — = (1)°(O)
X1,1)G
V@)

£ 0) ("oB%e Ay, e (Bof)&

frg°(G) (91)"(G)

(Xg.8)c

This two pasting composites are equal since the first is obtained by the pasting composite
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of the top and front faces of the diagram

KT (G) ba)e (Ik)*(G)
| |
| |
k* () | (k*0B")a | (Bok)g
U k) (e
| I (loa)g,
| |
k*(F : k*g* (G ’ k)" (G
( ) k*l(b) ‘g( ) (Xg*k)G (g ) ( )
| (Oé*ol*)G |
l?(a*) : [f( *) ”(Xl}a)c:
a)p * ok
! @i | (Fa
. e p—— (@) (900" (@)
7 N (Xl,f)G AN
4 * * A
rw s e S e
i N (A%f)G h
, Yrew ~ A
s N A
; » *
[ (F) 7*(b) I*9(G) (Xg.8)c (9@

and the second one is obtained by pasting back and bottom faces, consisting of squares
whose edges are given by broken arrows. This diagram commutes since the prism is a
coherence, whose square which shares with the cube is an identity 2-morphism of the 1-
morphism (a* o §%)q: k*I*(G) — f*¢*(G), which is a component of the pseudo natural
transformation a* o 8*: k*I* — f*g*, indexed by the object G in the 2-category F,. The
cube is just the coherence for the modification xy which is a component indexed by the
horizontal composition (o« of the pseudo natural transformation y, so the vertical edge of
the above horizontal composition is equal to the component (Boa)g: (Ik)*(G) — (9.f)*(G)
indexed by the same horizontal composite. In order to prove that £ is really a bicat-
egory, we need to show that the Godement interchange law holds, and that the above
horizontal composition is associative up to the coherent associativity isomorphism given
by acpa: ((hg)f,(cb)a) = (h(gf),c(ba)), for any three composable 1-morphisms.
For any three horizontally composable 2-morphisms in B,



and for any three horizontally composable 2-morphisms in £ which covers them

k*(F) 1(G) m*(H)
p o j 85 v Vi

Yo Yv {r
B () F— s g"(Q) G I (H)

we need to show that auvu 0 ((potp) o) = (po(pod))oacyq. The 2-morphism po (1o @)
on right hand side is given by the pasting

(Xm,1k)H

(lk)*m*(H)—— (mlk)*(H)

(K)* )" 1 (k)Y

y(X%lk)H

Y @k)* (o)
K1 (G) =X ()4 (G) — (1) *h* (H) —— (hik)*(H)
(Tk)*(c) (Xh,ik)H

k™ (v) . . . .
Bk BR))e (BE)* h*) (hBE);

2 (xgn)a 2 (or): 2 (xn i)

)

ke (F kgt (G ) (G) —— (gk)*h* (H) ——> (hgk)*(H
(F) = 07 (6) ——— (gh)"(G) o (9R) W (H) —= (gh)* (1)
" @ (a*g")a (9 ((90)*h*) (hgo)

B Axga)c 2 (ga): (Xhga) i

o

B ) o £207(G) o (0)°(G) o ()R (H) —= (kg (H)

of the above diagram in which horizontal compositions are denoted by the concatenation.
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By the definition, the horizontal composition p o 9 is given by the p

asting of the diagram

P () 2 ()
*(w
(w) (l*O’Y*)H/(X»y,l)H (vol)
V1% (o)
l* U*h*(H) — (h))*(H
(@) *(c) ( (Xn,0)H )*(H)
p Be  Hgry, |BoNIHy, yy |
Jw
P (C) 5 0" (H) > (hg)" ()

and the horizontal composition (p o) o ¢ on the left hand side of th

e equation is given by

ke () S oy (B ) ()
k*l*(w) * ]k * * * *
(K*U*v* ) (E*(YD)*)u (VIR) Y
A k7 (p) /k*((X'y,l)H) y(X’yl,k)H
Ml (G) E*1*(c) R ( Z*((Xh,z)H) (hl) ( )(Xhl,k)H (hlk) ( )
k*(U) * * * Q% Ik * * *
k*(8%) (k*B*h*) (k*(hB)*) (hBk)3
Z k=((5%)e) i ((xnp) 1) (Xhgop) i
k(%)
E*(F kg (G kg h* (H) — k*(hg)*(H) —— (hgk)*(H
(F) v kY (G) et ( k)*((thg)H)( 9)*( )(th’k)H( gk)*(H)
“ o (@*g%)G (a*g*h*) i (o (hg)*) i (hga) i
B Aot g%y Zo (o) 1) Z (xngo)
¢

the pasting of the above diagram, in which all compositions are denoted by concatenation.

By the above construction, we have the following main theorem.
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Theorem 4.1. For any pseudo 2-functor F: B°P — 2 — Cat, the second Grothendieck
construction gives a 2-fibration F: € — B.

Proof. We define the 2-functor F: £ — B on any object (z, E) of £ by F(x, E) := z. Also
for any 1-morphism (f,a): (z, E) — (y, F) we define F(f,a) := f, and for any 2-morphism
(o, @): (f,a) — (g,b) we define F(a, ¢) := . It is easy to see that such 2-functor is really
a 2-fibration. O
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