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We show that all possible 388 4-dim Kochen–Specker (KS) (vector) sets (of yes–no questions) with 18
through 23 vectors and 844 sets with 24 vectors all with component values from {−1,0,1} can be
obtained by stripping vectors off a single system provided by Peres 20 years ago. In addition to them,
we have found a number of other KS sets with 22 through 24 vectors. We present the algorithms we
used and features we found, such as, for instance, that Peres’ 24-24 KS set has altogether six critical KS
subsets.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The Kochen–Specker (KS) theorem has recently been given
renewed attention due to new theoretical results which then
prompted new experimental and computational techniques.

The new theoretical results concern the conditions under which
such experiments are feasible at all [1–4], including a possible way
to formulate the KS theorem for single qubits [5,6]. Such results
and experiments enable applications in quantum computation (re-
strictions imposed on complex configurations of quantum gates,
implementations of KS configurations of quantum gates that rule
out classical solutions, etc.).

The experiments were carried out for spin- 1
2 ⊗ 1

2 particles (cor-
related photons or spatial and spin neutron degrees of freedom),
and therefore in this Letter we provide results only for 4-dim KS
vector sets of yes–no questions (KS sets for short). The first ex-
periments and their designs [7–11] were not literal KS sets. They
made use of state-dependent vector orientations that were addi-
tionally “translated” into new measurable observables according to
ingenious keys found by their authors, because they could not be
directly implemented by reading off the orientations of the vectors
from the original set. The most recent designs and experiments
[12–17] dispense with state-dependent vectors.

The configurations of Hilbert space vectors and subspaces in KS
sets have interesting symmetries that have intrigued many authors
since the very discovery of the KS theorem. The set of Kochen
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E-mail address: pavicic@grad.hr (M. Pavičić).

and Specker themselves [18] is a highly symmetrical structure
that consists of three identical substructures each of which con-
sists of five hexagons. This perfect symmetry enabled Kochen and
Specker to “see” and prove their theorem. Other highly symmet-
rical 3-dimensional constructions were given by Peres [19] and
Penrose [20]. Both constructions can be given a straightforward
physical interpretation (by means of either rays in a 3-dim spin-1
Hilbert space—equivalent to those in Euclidean space—or by means
of Majorana spin representation) and an appealing geometrical vi-
sualisation on a cube [21] or on Escher’s Waterfall ornament [20].

Similar symmetries were found for higher spins, i.e., higher di-
mensions. In four dimensions, even more symmetries have been
found. Peres has found a highly symmetrical 24 system of 24 vec-
tors grouped in 24 tetrads each consisting of 4 mutually orthogonal
vectors [19]. This system can be seen as a geometrical representa-
tion of Mermin’s elegant set for a pair of two spin- 1

2 subsystems
( 1

2 ⊗ 1
2 ) [22] which has recently been experimentally realised [14].

Another representation, based on a dodecahedron (consisting of
12 pentagons and containing 40 rays), has been given by Pen-
rose [20,23,24]. Its physical representation is based on a Majorana
representation of a pair of entangled spin- 3

2 systems. In these ex-
amples, a geometric visualisation is not as direct as in the afore-
mentioned 3-dim cases, where we can make use of a Euclidean
space instead of a Hilbert space. Nevertheless it can help us find
appropriate experimental sets even in cases with a much higher
number of rays, corresponding to the number of measurements
and preparations of a system or the number of gates we pass the
system through—depending on the kind of experiment.

For instance, KS sets recently considered by Aravind and Lee-
Elkin are based on the geometry of two 4-dimensional polytopes,
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the 600-cell (each cell congruent to a regular tetrahedron) and the
120-cell, which provide us with highly symmetrical configurations
of 300 and 60 KS rays, respectively [25]. These highly symmetri-
cal structures (usually a particular regular group) can be extended
to higher dimensions [26], but they also contain many KS sub-
structures. For example, the smallest 4-dim 18-9 system found by
Cabello et al. [27], a 20-11 found by [28], and a number of sys-
tems with 19 through 24 rays and 10 through 24 tetrads found by
Pavičić et al. [29] were all found to be contained in Peres’ 24-24
system [30].

These findings motivated us to find out how many possible KS
sets there are, how many of them are sub-sets of larger ones, and
whether we can generate them from each other. This is, however,
a rather complex task which cannot be carried out as a straight-
forward counting, simply because all today’s clusters and grids to-
gether would take many ages of the Universe to carry it out using
a brute force approach. The complexity of the direct approach is il-
lustrated, e.g., by the fact that it took seven years before Gould and
Aravind [31] succeeded in comparing just two of such systems—the
aforementioned Peres’ and Penrose’s 3-dim KS systems—and prov-
ing them isomorphic to each other. Instead, we developed a new
way of describing and visualising KS systems, wrote many new al-
gorithms and programs, and discovered many new symmetries and
other features of the systems.

In Ref. [29] we gave algorithms for exhaustive generation of KS
system containing arbitrary number of vectors with all possible
numbers of their blocks in any number of dimensions with vector
component values from any set. Then we scanned all the systems
with up to (but not including) 23 vectors in a 4-dim space. In the
meantime, we also scanned all the systems with 23 vectors, and
the results revealed many new features. In particular, it turned out
that all possible KS vector sets with up to and including 23 vec-
tors and with components from the set {−1,0,1} are contained in
Peres’ 24-24 set. It was obvious that by simply pealing off blocks of
vectors from the 24-24 set we get many more subsets. But then we
discovered that by using a lattice representation of vector rays and
filtering them through non-dispersive states that we can define on
these lattices, we get exactly the KS subsets contained in the 24-24
set. Via this method, we get additional 844 24-vector systems con-
tained in the 24-24 set. We conjecture that these are all possible
KS sets with 24 vectors with components from the set {−1,0,1}.

We also found 37 new KS sets with 22 through 24 vectors with
component values from other sets (not from {−1,0,1}).

2. Algorithms

To obtain our results we used the algorithms that are described
in detail in [29] and some others that we describe in Appendix A.

We start by describing vectors as vertices (points) and orthog-
onalities between them as edges (lines connecting vertices), thus
obtaining MMP diagrams [32,30,33] which are defined as follows:

1. Every vertex belongs to at least one edge;
2. Every edge contains at least 3 vertices;
3. Edges that intersect each other in n − 2 vertices contain at

least n vertices.

We denote vertices of MMP diagrams by 1,2,..,A,B,..a,
b,.. . There is no upper limit for the number of vertices and/or
edges in our algorithms and/or programs.

Isomorphism-free generation of MMP diagrams follows the gen-
eral principles established by [34], which we now recount briefly.
Deleting an edge from an MMP diagram, together with any vertices
that lie only on that edge, yields another MMP diagram (perhaps
the vacuous one with no vertices). Consequently, every MMP dia-
gram can be constructed by starting with the vacuous diagram and

adding one edge at a time, at each stage obtaining a new MMP
diagram. We can represent this process as a rooted tree whose
vertices correspond to MMP diagrams, in which the vertices and
edges have unique labels. The vacuous diagram is at the root of
the tree, and for any other diagram its parent node is the diagram
formed by deleting the edge with the highest label. The isomorph
rejection problem is to prune this tree until it contains just one
representative of each isomorphism class of diagram.

To find diagrams that cannot be ascribed 0-1 values, we apply
an algorithm which we call states01 and which is based on the
lattice theory of Hilbert space states. The algorithm is an exhaus-
tive search of MMP diagrams with backtracking. The criterion for
assigning 0-1 (dispersion-free) states is that each edge must con-
tain exactly one vertex assigned to 1, with the others assigned to 0.
As soon as a vertex on an edge is assigned a 1, all other vertices
on that edge become constrained to 0, and so on.

3. Results

To find KS vectors, we follow the idea put forward in [32,30]
and proceed so as to require that their number, i.e. the num-
ber of vertices within edges, corresponds to the dimension of the
experimental space R

n and that edges correspond to n(n − 1)/2
equations resulting from inner products of vectors being equal to
zero (meaning orthogonality). So, e.g., an edge of length 4, BCDE,
represents the following 6 equations:

aB · aC = aB1aC1 + aB2aC2 + aB3aC3 + aB4aC4 = 0,

aB · aD = aB1aD1 + aB2aD2 + aB3aD3 + aB4aD4 = 0,

aB · aE = aB1aE1 + aB2aE2 + aB3aE3 + aB4aE4 = 0,

aC · aD = aC1aD1 + aC2aD2 + aC3aD3 + aC4aD4 = 0,

aC · aE = aC1aE1 + aC2aE2 + aC3aE3 + aC4aE4 = 0,

aD · aE = aD1aE1 + aD2aE2 + aD3aE3 + aD4aE4 = 0. (1)

Each possible combination of edges for a chosen number of
vertices corresponds to a system of such nonlinear equations. A
solution to systems which correspond to MMP diagrams without
0-1 states is a set of components of KS vectors we want to find.
Thus the main method for finding all KS vectors is to exhaustively
generate all MMP diagrams, then pick out all those diagrams that
cannot have 0-1 states, then establish the correspondence be-
tween the latter diagrams and the equations for the vectors as
shown in Eq. (1), and finally solve the systems of the so obtained
equations.

To find solutions in the set {−1,0,1} we use the program vec-
torfind, and to find solutions in the set of real numbers we
use the interval analysis as described in detail in [29,35]. There
is no other upper limit for the number of vertices and edges of
the generated MMP diagrams and solved equations apart from the
computational power of today’s supercomputers.

In Table 1 we give the numbers of all 18- through 24-vector
sets with component values from {−1,0,1} that we generated and
solved with the help of the aforementioned algorithms and pro-
grams. Vector sets with vector component values from other sets
then {−1,0,1} are given at the and of the Letter.

We reported on the properties of the KS sets with 18 through
(including) 22 vectors in [29].1 It took two weeks on our clus-
ter with 500 3.4 GHz processors (recalculated) in 2004. For the
present results, we ran a parallel computation for 23-vector sets
and obtained the 275 sets given in the 6th row of Table 1. This

1 Notice that here (as opposed to [29]) the sets with loops of size 2 and 3 are put
together.
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Table 1
KS sets for systems with 4 degrees of freedom with up to 24 vectors with component values from {−1,0,1}.

\ 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Total

18 1 1
19 1 1
20 1 5 1 7
21 2 11 4 1 18
22 1 9 36 23 12 3 1 85
23 2 19 76 79 58 27 11 3 1 276
24 1 6 39 137 187 188 136 83 41 18 6 2 1 845

Total 1 2 8 24 65 139 228 248 216 147 86 42 18 6 2 1 1233

(a) (b) (c)

Fig. 1. KS sets: (a) 20-10; (b) the same 20-10 but redrawn so as to match the visual appearance of 18-9 in Fig. 1 from [36] and Fig. 3 of [29]; (c) 23-14 which contains
neither 18-19 nor (a), (b), (c) from Fig. 3 of [29].

took about two months on our cluster. We then analysed the data
and conjectured that all sets with solutions from {−1,0,1} might
be subsets of the aforementioned 24-24 set. Our program sub-
graph confirmed the conjecture.

That meant that we can actually get all 18- through 24-vector
sets by stripping vectors and tetrads—vertices and edges in MMP
notation—of the 24-24 set and filtering it with our state01 pro-
gram described in [29]. We wrote the program subset to gen-
erate all subsets (i.e. MMP diagrams with edges removed) of the
24-24 set. From these, we determined the ones with 18 through
23 vectors that are isomorphic with the ones we previously ob-
tained on our cluster. It is interesting that all such stripped sets
filtered by state01 have solutions. In addition, we determined
(again filtering the output of subset) 844 24-vector sets with
12 through 23 tetrads (MMP diagrams with 24 vertices with
12 through 23 edges). They are given in the seventh row of Ta-
ble 1. All that, i.e., obtaining all 1232 sets shown in Table 1 with
their vector component values from the 24-24-set, took a few min-
utes on a single PC.

In that way we can even get new sets with up to 41 vec-
tors (upper limit for the solutions from {−1,0,1} [29]) simply by
adding new vectors and tetrads to the sets from the 7th row of
Table 1.

For a higher number of vertices we might find KS sets that do
not contain any of the sets from Table 1 as their subsets. If their
vectors had their component values from the set {−1,0,1}, they
should have loops of order higher than six because they should
not have any of the above 1231 sets as their subsets. With today’s
computer power, such a search is not feasible, though.

We analysed the obtained vector sets and obtained the prop-
erties we present below. All the vector sets contain a hexagon
MMP loop 1234, 4567, 789A, ABCD, DEFG, GHI1 which is al-
ways given in our figures [except in Fig. 1(b)] and for which we
assume it is present whenever we give a new KS set. For in-

stance, for 20-10 from Fig. 1(a) we just write: H68F, IJK5, 1J9B,
4KEC.

The set 20-10 contains the smallest system 18-9. To determine
the orientations of its vectors, we use the program vectorfind.
It gives the component values given in Table 2 of Appendix B.

Previously, we found two smallest (20-11) KS sets that do not
contain the smallest 18-9 set (Fig. 4(a) and (b) of [29]) and two
smallest (22-13) sets that contain neither of the previous sets
(Fig. 4(c) and (d) of [29]).

Our new results show that there are two 23-14s that contain
neither the above 18-9, nor the two 20-11s, nor the first of the
above 22-13s. One of them, 12JI, 1JLA, 35CE, 678K, 9ABL,
CDEM, FGHN, GNK7, is given in Fig. 1(c). It contains (d) from Fig. 3
of [29].

There are also two 23-14s that contain neither the above 18-9,
nor the two 20-11s, nor the second of the above 22-13s. One of
them, 12JI, 1J9B, 345K, 4KEC, 6LMB, 9ABM, FGHN, GNL7, is
given in Fig. 2(a). It contains (c) from Fig. 3 of [29].

The vectors component values for the two KS sets are given in
Table 2 of Appendix B.

In Fig. 2(b) we give the only set (24-15) that does not contain
any of the previous sets. The set (c) is the one which contains all
the previous sets. Their MMP notations can easily be read off their
figures.

The vector component values for the two 23-14 KS sets are
given in Table 2 of Appendix B.

Additional KS sets are given in Appendix B.
KS sets with vectors having component values from sets other

than {−1,0,1} are less numerous then the ones with values from
{−1,0,1}. They are not our primary target in this Letter and we
shall present only several examples below while the exhaustive
generation of these sets is under way [37].

All 37 KS sets with 22 through 24 vectors with component val-
ues from sets other than {−1,0,1} would have component values
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(a) (b) (c)

Fig. 2. (a) 23-14 which contains neither 18-19 nor (a), (b), (d) from Fig. 3 of [29]; (b) 24-15 set (the only one that exists) that does not contain any of the previous sets;
(c) 24-20 that contains all previous sets.

(a) (b) (c)

Fig. 3. KS sets with vectors whose components are not from {−1,0,1}: (a) 22-11; (b) 23-12; (c) 24-14.

from {−1,0,1} if we discarded vectors that share only one tetrad.
But we clearly cannot do so because we have to have all vectors in
every tetrad to be able to assign 1 to one and 0 to three of them.
This confirms the results obtained in [29,38].

All of these sets contain the 18-9 set. The smallest one is 22-
11: 25BE, 1AJK, JFLM, 68FH, 39IC shown in Fig. 3(a) It contains
20-10 from Fig. 1(a).

The vector component values for this KS set are given in Table 2
of Appendix B.

23-12 KS set shown in Fig. 3(b) contains the 18-9, the 20-10,
and the 22-11. And 24-14 set shown in Fig. 3(c) contains the 18-
9, the 20-10, a 21-11, the 22-11, a 22-12, a 22-13, and a 23-12.
Additional such KS sets and vector components the reader can find
in [37].

4. Conclusions

We sum up our results as follows. All possible 388 KS sets for
systems with 4 degrees of freedom with 18 through 23 vectors and
844 KS sets with 24 vectors with component values from {−1,0,1}
can be obtained by “peeling” vectors off a single system provided—
in effect—by Peres 20 years ago. But we would not know that the
sets with 18 through 23 vectors obtained by such peeling exhaust
all possible KS sets up to 23 vectors without extensive compu-
tation we carried out. And the computation would not have been
feasible without putting together the theory of hypergraphs, lattice
theory, and interval analysis, and many algorithms and programs
we devised for the purpose.

Among particular features of KS sets we presented in Section 3,
we would like to single out the one about the so-called critical
sets, i.e., those KS sets that do not properly contain any KS subset

[23,25]. We found out that there are altogether six critical subsets
of Peres’ 24-24 set. These are 18-9 [27], 20-11 [28], another 20-11
and two 22-13s [29], and 24-15 [given in Fig. 2(b)].

There exist sets with 22 and more vectors with component val-
ues that are not from {−1,0,1} and that are not isomorphic to any
of the 1,233 sets mentioned above. Unlike the “{-1,0,1} sets,” they
can be obtained only by extensive generation of MMP diagrams
and computation of their properties, which we are currently carry-
ing out [37].

As a final note, we mention that all 4-dim KS sets we have
considered contain a single hexagon as the biggest loop formed by
their tetrads. A geometrical interpretation of this fact is an open
question, because in general there is no particular limit on the
loop size in non-KS orthogonal tetrads of rays contained in 4-dim
Hilbert space sets.
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Appendix A. Programs

The primary programs used for this project (and referenced ear-
lier in this Letter) are subgraph, states01, vectorfind, and
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subset.2 Each is a stand-alone ANSII C program. Each program
typically has several input, output, and other options, which can be
listed with the --help option by typing e.g. subgraph --help
at the Unix or Linux command-line prompt. Below we describe
their main algorithms.

A.1. subgraph

The program subgraph takes as its input two hypergraphs in
the form of MMP diagrams, a test graph and a reference graph. It
will indicate whether or not the test graph is a subgraph of the
reference graph, using the following algorithm (suggested by Bren-
dan McKay).

Let the edges of the test graph be w1, w2, . . . , wm and of
the reference graph v1, v2, . . . , vn , where m � n. (If m > n, the
subgraph relation will fail.) The problem is to find a sequence
v ′

1, . . . , v ′
m ⊆ {v1, v2, . . . , vn} such that the mapping wi �→ v ′

i (i =
1, . . . ,m) is an isomorphism. We construct this sequence one ele-
ment at a time. For v ′

1, we choose an element from {v1, . . . , vn}.
For v ′

2, we choose an element from {v1, . . . , vn} whose relation-
ship (described below) to v ′

1 is the same as the relationship of w2
to w1. If there is no such v ′

2, we backtrack and choose another v ′
1.

Next, v ′
3 is anything whose relationship to v ′

1, v ′
2 is the same as

the relationship of w3 to w1, w2. And so on, backtracking recur-
sively if necessary until a v ′

m is found. If this process is successful,
the subgraph relation holds; if, on the other hand, the backtracking
is exhausted, the subgraph relation fails.

We determine the condition “v ′
k+1 is in the same relationship

to v ′
1, . . . , v ′

k as wk+1 is to w1, . . . , wk” as follows. Suppose we
have chosen v ′

1, . . . , v ′
k and wish to find the possibilities for v ′

k+1.
We look at wk+1: it has (e.g. for a 4-dim hypergraph) 4 ver-
tices, and each is a member of some (possibly none) of the edges
w1, . . . , w[k]. So wk+1 gives a set of 4 subsets (in terms of in-
dices) of {1,2, . . . ,k}. Similarly, any edge x in the reference graph
gives a set of 4 subsets of {1,2, . . . ,k} that say which of the edges
v ′

1, . . . , v ′
k contain each of the 4 vertices of x. The choices for v ′

k+1
are those edges of the reference graph which give the same 4 sub-
sets of {1,2, . . . ,k} as wk+1 gives (and of course v ′

k+1 is different
from v ′

1, . . . , v ′
k).

A.2. states01

The program states01 indicates whether or not an MMP
diagram can be assigned a non-dispersive state, in other words
whether there exists a 0-1 assignment to all vertices such that
each edge contains exactly one vertex assigned with 1. The pro-
gram does an exhaustive search of all possible assignments to the
MMP diagram, using a fast backtracking algorithm. More details
are described in Ref. [29].

A.3. vectorfind

The program vectorfind takes as its input an MMP diagram
supplied by the user. It attempts to assign to each vertex a 3-dim
or 4-dim vector (when the MMP diagram has 3 or 4 vertices per
edge respectively), such that the following constraints are satis-
fied: (1) each vector, chosen from a predetermined set specified
by the user, must be unique (non-parallel to all the others), and
(2) the vectors assigned to the vertices in a given edge must be
mutually orthogonal (i.e. have inner product equal to zero). If an
assignment is found, it is printed out; otherwise the failure to find

2 They can be downloaded from http://us.metamath.org/#ql or from
http://m3k.grad.hr/ql.

one is indicated. The algorithm is an exhaustive search of all possi-
ble assignments from the used-specified vector set, using recursive
backtracking.

A goal of the algorithm is to achieve extremely fast run time
(compared to the more general interval analysis method described
in Section 3). While worst-case run time can grow exponentially
with the number of vertices, typically the program’s speed is much
faster. An internal optimisation processes vertices with the most
edges before others to encourage early backtracking in the recur-
sive search. A user-settable timeout will abandon the relatively rare
attempts that take too long (and likely don’t have a solution). For
the standard KS sets in the literature, vector assignments are found
almost instantaneously on a desktop computer.

A.4. subset

The program subset is a relatively simple utility program that
generates all subsets of the set of edges of its input MMP diagram.
By default, subsets containing isolated edges (ones not connected
to any other edge) are suppressed. The output will consist of 2n−1

MMP diagrams minus the suppressed ones, where n is the num-
ber of edges. The program does not check for isomorphisms, so
it is possible that some of its output diagrams are isomorphic to
each other. (The program subgraph is one way to filter these if
desired.)

Appendix B. Additional results

Using our program subgraph and several ad hoc Linux scripts
for collecting and filtering outputs we obtained the following re-
sults. The complete encoding of the KS sets we use below include
hexagons which we only assumed in our figure representations
above.

KLMN, GHIJ, DEFJ, BCFI, 9ABC, 78DE, 56GH, 1234, 34AC,
248E, 146H, 9CMN, 7ELN, 5HLM and KLMN, HIJN, DEFG, 9ABC,
5678, 234J, 178I, 1BCH, 4FGN, 68EG, ACDG, 23LM, 358M,
39CL are the other two 23-14 sets that do not contain Fig. 3(c)
and Fig. 3(d) of [29], respectively and that do contain Fig. 3(d) and
Fig. 3(c), respectively [we call them (c) and (d) below].

Other KS sets that contain neither 18-9, nor the two 20-11s
are the following 23-15 (1), 24-14 (1), 24-15 (10), 24-16 (5), and
24-17 (2).

23-15 contains both (c) and (d):
KLMN, GHIJ, CDEF, ABEF, 9BIJ, 789A, DFMN, HJLN, 3456,

2568, 1347, 1278, 46CF, 45GJ, 18KN.
24-14 contains both (c) and (d):
LMNO, HIJK, DEFG, 9ABC, 5678, 1234, 78KO, BCJO, 34IN,

FGHN, 2468, 14AC, 58EG, 9CDG.
24-15(2,4,6-9) do not contain (c) and 24-15-(1,3-5,10) do not

contain (d); thus 24-15-(4) is a critical KS set isomorphic to the
one given in Fig. 2(b):

LMNO, HIJK, DEFG, 9ABC, 5678, 1234, 3478, 24BC, 14FG,
68JK, ACIK, EGIJ, 58NO, 9CMO, DGMN.

LMNO, HIJK, DEFG, 9ABC, 5678, 1234, 34BC, 78AC, 24FG,
68EG, 9CJK, DGIK, 14NO, 58MO, IJMN.

LMNO, HIJK, DEFG, 9ABC, 5678, 1234, 34CK, 248O, 14FG,
ABIJ, 67MN, 5BJO, 79KN, BEGI, 7DGM.

LMNO, HIJK, DEFG, 9ABC, 5678, 1234, 34FG, 78EG, BCDG,
24JK, 68IK, ACHK, 14NO, 58MO, 9CLO.

LMNO, HIJK, DEFG, 9ABC, 5678, 1234, 478K, 3BCK, 68FG,
ACEG, 12IJ, 58NO, 9CMO, 2DGJ, 2IMN.

LMNO, HIJK, DEFG, 9ABC, 5678, 1234, 478O, 3BCO, 68FG,
ACEG, 58JK, 9CIK, 12MN, 2DGN, 1HKN.

LMNO, HIJK, DEFG, 9ABC, 5678, 1234, 48KO, 7FGK, 3BCO,
ACEG, 56IJ, 12MN, 69CJ, 2DGN, 26IM.
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Table 2
Table of vector component values for some Chosen KS sets.

18-9 23-14a 23-14b 24-15 24-20 22-11

1 {1,0,0,1} {0,0,0,1} {0,0,0,1} {0,0,0,1} {0,0,0,1} {0,1,0,0}
2 {0,1,0,0} {0,0,1,0} {1,0,0,0} {1,0,0,0} {0,1,1,0} {0,0,1,0}
3 {0,0,1,0} {1,−1,0,0} {0,1,1,0} {0,1,1,0} {1,0,0,0} {1,0,0,0}
4 {1,0,0,−1} {1,1,0,0} {0,1,−1,0} {0,1,−1,0} {0,1,−1,0} {0,0,0,1}
5 {1,0,1,0} {0,0,1,1} {1,0,0,−1} {1,1,1,−1} {1,1,1,1} { 1√

2
, 1√

2
,0,0}

6 {1,−1,−1,1} {1,−1,1,−1} {1,1,1,1} {1,1,1,1} {1,0,0,−1} { 1
2 ,− 1

2 ,− 1√
2
,0}

7 {1,−1,−1,−1} {1,−1,−1,1} {1,−1,−1,1} {1,−1,−1,1} {1,−1,−1,1} { 1
2 ,− 1

2 , 1√
2
,0}

8 {1,1,0,0} {1,1,1,1} {1,−1,1,−1} {1,1,−1,−1} {1,0,1,0} { 1
2 , 1

2 ,0,− 1√
2
}

9 {1,−1,0,0} {1,0,0,−1} {1,1,0,0} {0,1,0,1} {1,1,−1,−1} {0, 1√
2
, 1

2 , 1
2 }

A {1,1,1,1} {0,1,−1,0} {0,0,1,1} {1,0,1,0} {0,1,0,1} { 1√
2
,0,− 1

2 , 1
2 }

B {1,1,−1,−1} {1,0,0,1} {1,−1,0,0} {0,1,0,−1} {1,0,−1,0} { 1
2 ,− 1

2 ,0,− 1√
2
}

C {0,0,1,−1} {1,1,1,−1} {1,1,1,−1} {1,1,−1,1} {1,1,1,−1} {0,− 1√
2
, 1

2 , 1
2 }

D {1,1,1,−1} {1,−1,−1,−1} {1,1,−1,1} {1,−1,−1,−1} {1,−1,1,1} { 1
2 , 1

2 , 1√
2
,0}

E {1,0,−1,0} {1,1,−1,1} {1,−1,−1,−1} {1,−1,1,1} {0,0,1,−1} { 1
2 ,− 1

2 ,0, 1√
2
}

F {0,1,0,1} {0,1,0,−1} {0,1,0,−1} {0,0,1,−1} {1,−1,−1,−1} {0, 1√
2
,− 1

2 , 1
2 }

G {1,−1,1,1} {1,0,1,0} {1,0,1,0} {1,1,0,0} {1,1,0,0} { 1√
2
,0,− 1

2 ,− 1
2 }

H {0,0,0,1} {1,0,−1,0} {1,0,−1,0} {1,−1,0,0} {1,−1,0,0} { 1√
2
,0, 1

2 , 1
2 }

I {0,1,−1,0} {0,1,0,0} {0,1,0,0} {0,0,1,0} {0,0,1,0} {0,0,− 1√
2
, 1√

2
}

J {1,0,0,0} {0,0,1,0} {0,0,1,1} {0,1,0,0} {0,0, 1√
2
,− 1√

2
}

K {1,1,−1,−1} {1,0,0,1} {1,0,0,1} {1,0,0,1} {− 1√
2
,0,− 1

2 , 1
2 }

L {0,1,1,0} {1,1,−1,−1} {1,−1,1,−1} {1,1,−1,1} {
√

3
2 ,−

√
2

4 ,− 1
4 , 1

4 }
M {1,−1,1,1} {0,0,1,−1} {1,0,−1,0} {1,−1,1,−1} { 1

2 ,
√

3
2
√

2
,

√
3

4 ,−
√

3
4 }

N {0,1,0,1} {0,1,0,1} {1,1,1,−1} {0,1,0,−1}
O {0,1,0,0} {0,0,1,1}

LMNO, HIJK, DEFG, 9ABC, 5678, 1234, 4FGK, 78EG, BCDG,
3KNO, 68MO, ACMN, 12IJ, 258J, 29CI.

LMNO, HIJK, DEFG, 9ABC, 5678, 34KO, 78JN, BCIN, 68FG,
ACEG, 12HM, 1234, DGHO, 2458, 149C.

LMNO, IJKO, EFGH, ABCD, 6789, 345K, 125N, 289J, 1CDJ,
479M, 3BDM, 69GH, ADFH, 5EHO, 5KNO.

24-16(2,3) do not contain (c):
LMNO, HIJK, DEFG, 9ABC, 5678, 8BCO, 7FGO, ACJK, EGIK,

1234, 346N, 249C, 14DG, 5HKN, 125M, 56MN.
LMNO, HIJK, DEFG, 9ABC, 5678, BCJK, FGIK, ACNO, EGMO,

3478, 1256, 48HK, 269C, 16DG, 38LO, 1234.
LMNO, HIJK, DEFG, 9ABC, 678C, FGJK, EGNO, 3458, 125B,

5CDG, 1267, 349A, 27IK, 4AHK, 17MO, 3ALO.
LMNO, HIJK, DEFG, 9ABC, BCJK, FGIK, 5678, 3478, 1256,

1234, ACNO, EGMO, 489C, 47DG, 26HK, 16MN.
LMNO, HIJK, DEFG, 9ABC, CFGO, EGJK, 5678, 3478, 1256,

1234, 24BO, 9AMN, 68DG, 14IK, AHKN, 67AM.
24-17 contain both (c) and (d):
LMNO, HIJK, DEFG, FGJK, EGNO, 9ABC, 5678, 3478, 24BC,

68IK, ACHK, 58MO, 9CLO, 14DG, 1256, 139A, 1234.
LMNO, HIJK, JKNO, DEFG, 9ABC, 78BC, 56FG, 349A, 12DE,

3478, 1256, ACIK, EGHK, 48MO, 26LO, 259C, 47DG.
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M. Pavičić, J.-P. Merlet, B.D. McKay, N.D. Megill, J. Phys. A 38 (2005) 3709 (Cor-
rigendum).
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[35] M. Pavičić, J.-P. Merlet, N.D. Megill, Exhaustive enumeration of Kochen–Specker

vector systems, The French National Institute for Research in Computer Science
and Control Research Reports RR-5388, http://www.inria.fr/rrrt/rr-5388.html.

[36] A. Cabello, Phys. Rev. Lett. 101 (2008) 210401, arXiv:0808.2456v2.
[37] M. Pavičić, J.-P. Merlet, N.D. Megill, Algorithms for Kochen–Specker vectors, un-

published.
[38] J.-Å. Larsson, Europhys. Lett. 58 (2002) 799, arXiv:quant-ph/0006134.


