Can Two-Way Direct Communication Protocols Be Considered Secure?

Mladen Pavičić

Center of Excellence for Advanced Materials and Sensors (CEMS), Research Unit Photonics and Quantum Optics, Institute Ruđer Bošković (IRB), Zagreb, Croatia.

Nano Optics, Department of Physics, Humboldt University (HU), Berlin, Germany.

EMN Meeting on Quantum, June 18-22, 2017, Vienna, Austria.

EMN Quantum-2017
Quantum Cryptography, QKD, BB84 Protocol
Direct Two-Way Communication with Entangled Pairs of Photons in Bell States

Linear optics:

Two Bell States, \(|\Psi^{\mp}\rangle = \frac{1}{\sqrt{2}}(|H\rangle_1|V\rangle_2 \mp |V\rangle_1|H\rangle_2) \), Ping-Pong Protocol.

Direct Two-Way Communication with Entangled Pairs of Photons in Bell States

Linear optics:

Two Bell States, $|\psi^\mp\rangle = \frac{1}{\sqrt{2}} (|H\rangle_1 |V\rangle_2 \mp |V\rangle_1 |H\rangle_2)$, *Ping-Pong Protocol*.

Non-linear optics:

Four Bell States, $|\psi^\mp\rangle, |\Phi^\mp\rangle = \frac{1}{\sqrt{2}} (|H\rangle_1 |H\rangle_2 \mp |V\rangle_1 |V\rangle_2)$.

Direct Quantum Communication, QKD, Ping-Pong Protocol; Message Mode (MM)
Direct Quantum Communication, QKD, Ping-Pong Protocol; Control Mode (CM)

Undetectable Eve copies all messages in MM (msg. mode)
Direct Two-Photon Communication with Single Photons

Linear optics:

Single photon states, in two bases ($\{|0\rangle, |1\rangle\}$ and $\{|+\rangle, |-\rangle\}$) as in the BB84 protocol

Marco Lucamarini,
Quantum Decoherence and Quantum Cryptography,
PhD Thesis, *University of Rome La Sapienza*, 2003,
http://sapienzadigitallibrary.uniroma1.it/identifier/RMSFI_00000130

Marco Lucamarini and Stefano Mancini,
Secure Deterministic Communication without Entanglement,
Lucamarini-Mancini Protocol—LM05—Message Mode

PREPARATION

- $|0\rangle$, $|1\rangle$
- $|+\rangle$, $|-\rangle$

ENCODING

- $I = 0$
- $iY = 1$

Alice

- $I|0\rangle = |0\rangle$
- $I|1\rangle = |1\rangle$
- $I|+\rangle = |+\rangle$
- $I|-\rangle = |-\rangle$

- $iY|0\rangle = -|1\rangle$
- $iY|1\rangle = |0\rangle$
- $iY|+\rangle = |-\rangle$
- $iY|-\rangle = -|+\rangle$

Bob

MEASUREMENT AND DECODING

- 0, 1
Deterministic Communication—Single Photons

Lucamarini-Mancini Protocol—LM05—Control Mode

PREPARATION

| 0 ⟩, | 1 ⟩
| + ⟩, | − ⟩

AND DECODING

Bob

PBS

Alice

Source

classical channel

S

0, 1

Mladen Pavičić (CEMS & HU)

Security of Two-Way Protocols

EMN Quantum-2017
Undetectable Eve copies all messages in MM (msg. mode)
Alice-Bob and Alice-Eve Mutual Information

Security of a protocol, critical QBER via secret fraction

\[r = \lim_{N \to \infty} \frac{l}{n} = I_{AB} - I_{AE} \]

\(l \) = length of the final key, \(n \) = length of the raw key,
\(I_{AB}, I_{AE} \) = Alice-Bob, Alice-Eve mutual information
Alice-Bob and Alice-Eve Mutual Information

Security of a protocol, critical QBER via secret fraction

\[r = \lim_{N \to \infty} \frac{l}{n} = I_{AB} - I_{AE} \]

\(l = \) length of the final key, \(n = \) length of the raw key,
\(I_{AB}, I_{AE} = \) Alice-Bob, Alice-Eve mutual information

In BB84—\(D = \) disturbance in MM:
\(I_{AB} = 1 + D \log_2 D + (1 - D) \log_2 (1 - D) \),
\(I_{AE} = -D \log_2 D - (1 - D) \log_2 (1 - D) \)
Alice-Bob and Alice-Eve Mutual Information

Security of a protocol, critical QBER via secret fraction

\[r = \lim_{N \to \infty} \frac{l}{n} = I_{AB} - I_{AE} \]

\(l \) = length of the final key, \(n \) = length of the raw key,
\(I_{AB}, I_{AE} \) = Alice-Bob, Alice-Eve mutual information

In BB84—\(D \) = disturbance in MM:
\[I_{AB} = 1 + D \log_2 D + (1 - D) \log_2 (1 - D), \]
\[I_{AE} = -D \log_2 D - (1 - D) \log_2 (1 - D) \]

In two-way protocols—\(D \) = disturbance in CM:
\[I_{AB} = 1, \]
\[I_{AE} = -D \log_2 D - (1 - D) \log_2 (1 - D) \]

In MM \(D \) = presence of Eve;
\(D = 0 \)—Eve is absent; \(D = 0.5 \) (max disturbance)—Eve is always present.
BB84 has a critical D—2-way protocols do not
BB84 has a critical D—2-way protocols do not.

(a) $I_{AE}(D)$

(b) $I_{AB}(D)$

D is the disturbance in the message mode.

Two-Way Protocols (LM05 and ping-pong)

D is the disturbance in the control mode.
Proofs of security of two-way protocols

Proofs of security of two-way protocols

Proofs of security of two-way protocols

Both proofs are made for variable I_{AB} which depends on D and both proofs assume that Eve changes I_{AB}, while for the above attacks $I_{AB} = 1$.
Proofs of security of two-way protocols

Both proofs are made for variable I_{AB} which depends on D and both proofs assume that Eve changes I_{AB}, while for the above attacks $I_{AB} = 1$.

Can privacy amplification work without a critical D in MM?
Proofs of security of two-way protocols

Both proofs are made for variable I_{AB} which depends on D and both proofs assume that Eve changes I_{AB}, while for the above attacks $I_{AB} = 1$.

Can privacy amplification work without a critical D in MM?

With $I_{AB} = 1$ and max D, privacy amplification obviously cannot work.
Proofs of security of two-way protocols

Both proofs are made for variable I_{AB} which depends on D and both proofs assume that Eve changes I_{AB}, while for the above attacks $I_{AB} = 1$.

Can privacy amplification work without a critical D in MM?

With $I_{AB} = 1$ and max D, privacy amplification obviously cannot work.

There is nothing in CM which can determine critical D for MM \implies the proof of unconditionally security of 2-way protocols cannot be valid.
Can Two-Way Protocols Be Considered Secure?

There is no disturbance in the message mode (MM). Disturbance D belongs to the control mode (CN). MM and CM are completely disjoint and D from CM cannot have any influence on I_{AB} from MM—which is constant $I_{AB} = 1$.

Privacy amplification cannot work when Eve is in the line all the time. Can one find a level of Eve’s presence—determined by D from CM—for which the privacy amplification would unconditionally work?
Acknowledgements 😊

The work is supported by the *Croatian Science Foundation* through project IP-2014-09-7515 and CEMS funding by the *Ministry of Science and Education of Croatia*.
Thanks for your attention 😊

http://cems.irb.hr/en/research-units/photonics-and-quantum-optics/
http://www.irb.hr/users/mpavicic/