
Grid security infrastructure

based on Globus Toolkit

Valentin Vidić
vvidic@irb.hr

Center for Informatics and Computing
“Ruder Bošković” Institute

Bijenička cesta 54, Zagreb, Croatia

January 2006

Abstract - Grid resources and users are
distributed and often belong to different or-
ganisations. In order to establish trust in
this complex environment some extensions
to security standards (SSL, X.509, GSS-
API) are required. The most important ex-
tension is the introduction of proxy certifi-
cates that allow single sign-on access to Grid
resources. Grid PKI is also one of a few large
scale PKI implementations so it is interest-
ing to see how it is organised and operated.
Finally, a Globus GSS-API implementation
for securing applications is described.

I. INTRODUCTION

Most of today’s Grids consist of worldwide dis-
tributed resources connected over the Internet.
These resources act as a service for dispersed groups
of users belonging to different administrative do-
mains. Establishing trust in this environment is
essential as the resources involved (computational
and storage clusters, measurement equipment) are
often very expensive. One of the first integrated
solutions for the problem of Grid security (most
notably authentication) is Globus Toolkit[1].

This article presents Grid security implemented
by Globus Toolkit from three different aspects. The
first part defines the security tokens used for Grid
authentication - proxy certificates. This is followed
by a description of trust management based on Cer-
tification Authorities. Finally, the security inter-
face used by applications is presented. All the de-

scriptions in this article are based on the Globus
Toolkit version 3 as distributed in Virtual Data
Toolkit[2]. Although newer versions are available,
this one was chosen because it is in common use
throughout production Grids of today.

II. PROXY CERTIFICATES

Proxying is a common technique used to allow one
entity to act on behalf of another. Grid services
use proxy certificate to authenticate and perform
work on behalf of users. X.509 proxy certificate
is a certificate signed by a normal X.509 end en-
tity certificate or another proxy certificate. It is
clear that this is in violation with the classic PKI
model[3] where only CAs are allowed to sign cer-
tificates. Therefore some changes in the certificate
verification procedure are also needed.

The two major benefits of using proxy certificates
in the Grid are single sign-on (SSO) and delegation.
Single sign-on gives the user access to all Grid ser-
vices by entering his certificate private key pass-
word only once (at the beginning of the session).
At this point a proxy certificate with a short life-
time (10 hours by default) is generated. All further
accesses to Grid services use the proxy certificate
to authenticate the user without asking for pass-
word. This is possible because the proxy certificate
private key is stored unencrypted in a file acces-
sible only by the user. Delegation, on the other
hand, allows the user to issue a proxy certificate to
a remote Grid service. Grid service can then au-
thenticate acting as the user and perform work on



his behalf (execute jobs, transfer files).
Two formats of proxy certificates are in common

use today: Globus Toolkit version 2 (GT2) and ver-
sion 3 (GT3) style proxies. The main difference be-
tween the two is the way how proxy type is encoded.
In GT2 proxy type is determined from the proxy
certificate subject, while GT3 proxies use a special
ProxyCertInfo extension. Globus Toolkit version 2
recognises two proxy types:

• full,

• limited.

Full proxy is recognised by the final CN=proxy
element in the proxy certificate subject. The name
for this proxy type comes from the fact that the
proxy has the same rights as the original user. In
contrast, GT2 limited proxy has CN=limited proxy
in the subject. Rights assigned to this proxy are in
some way limited in comparison to full proxy. In
practice only Globus gatekeeper service recognises
and denies access to this type of proxy. This means
limited proxies are allowed to transfer files and ac-
cess other services but they cannot submit jobs.
The consequences of a compromised limited proxy
are therefore limited because the attacker can’t ac-
cess other clusters by submitting jobs. Limited
proxy also prevents denial of service attacks cre-
ated by jobs submitting new jobs.

Globus Toolkit version 3 introduced the following
proxy types:

• impersonation,

• limited,

• independent.

Impersonation and limited proxies are equivalent
to full and limited proxies in GT2, respectively.
The name of the full proxy was changed in order to
show that full proxy impersonates the user - it has
the same access rights as the user issuing it. In-
dependent proxy type is introduced for cases when
the proxy is assigned rights independent of the is-
suer. Independent proxy needs to have unique sub-
ject (usually a random number as the last element)
because rights are usually assigned by certificate
subject. Types for GT3 proxies are encoded with
different OIDs in policy element of ProxyCertInfo

extension. Apart from defining proxy type, this ex-
tension can be used to limit the delegation by speci-
fying a maximum length of proxy chain (path length
constraint). Although GT3 style proxies have been
standardised in form of RFC 3820[4], most of the
proxies used today are of GT2 type.

III. CERTIFICATE MANAGEMENT

For easier management, Grid CAs are usually es-
tablished per country and organised in geographi-
cally based trust federations called Policy Manage-
ment Authorities (PMA):

• APGridPMA in Asia,

• EUGridPMA in Europe,

• TAGPMA in Americas.

Federation defines minimum requirements (pro-
file) for all member CAs[5]. This includes oper-
ational procedures (user identification, certificate
and CRL publishing) and security controls (physi-
cal safety, signing procedures, auditing). Minimum
requirements are used for checking new CA compli-
ance during accreditation but also for relying par-
ties (deferent Grid projects) to determine if the fed-
eration CAs can be trusted for a particular purpose.

CA defines its own procedures in form of Certifi-
cate Policy (CP) and Certification Practice State-
ment (CPS). Certificate policy is defined as a set of
rules that indicate the applicability of a CA issued
certificates for a particular community or a class
of application with common security requirements.
Certification Practice Statement is a statement of
the practices that a certification authority employs
in issuing, managing, revoking, and renewing or re-
keying certificates. In other words, CP is a general
definition of roles for all the participants (CA, RA,
users, relying parties). CPS, on the other hand,
defines how these roles are to be implemented in
terms of procedures and security controls.

In practice, CP and CPS are merged in a single
document based on the framework defined in RFC
3647[6]. Such CP/CPS usually has the following
outline:

1. Introduction - defines the given CA and its
scope (applicability),



2. Publication and repository - defines the pa-
rameters of the certificate repository (usually
web based),

3. Identification and authentication - procedures
defining identification and authentification of
users,

4. Certificate life-cycle operational requirements
- management of certificates,

5. Facilities, management and operational con-
trols - non-technical controls implemented by
the CA,

6. Technical security controls - protection and
management of private keys,

7. Certificate, CRL, and OCSP profile - format
of the certificates and CRLs issued,

8. Compliance audit - procedure for assessment
of compliance,

9. Other business and legal matters - service fees
and legal responsibilities (personal privacy, in-
tellectual property, warranties, liability, terms
etc.)

Typical CA issues certificates for period of one
year. Certificate signing is done offline to protect
the CA private key. Signing machine is allowed to
be online only if the CA private key is stored in
a hardware security module. CRL issuing is done
at least once per month or more often in case of
certificate compromise.

Candidate CA is evaluated by two accredited
members in a peer-review process. After the
CP/CPS has been reviewed, CA is presented on
the next PMA meeting. Accreditation follows af-
ter possible remaining issues are addressed. Opera-
tions of accredited CAs are periodically audited to
check if it still complies with the CP/CPS. Exam-
ples of CP/CPS documents can be seen in [8] and
[9].

Accredited CAs from all the federations are made
available as a distribution in several different for-
mats by the International Grid Trust Federation
(IGTF). IGTF also coordinates the namespace of
certificate subjects and serves as central point of
contact for certificate related incidents. Typical CA
certificate package distributed by IGTF consists of
the following files:

• CA certificate,

• CA namespace policy,

• URL for CRL download,

• additional information about the CA.

Basename for all the files related to a single CA
is an MD5 hash of the CA subject condensed to
32 bits (e.g. ff94d436 for SRCE CA). This hashed
naming scheme allows fast lookup by CA name.
This speeds up verification because it is not nec-
essary to scan the whole directory to find a given
CA and allows updates to CA list while the applica-
tion is running. Although improbable, it is possible
that two CAs produce the same hash, so a number
acting as hash bucket index is appended to the file
extension (e.g. ff94d436.0 is used for the first CA
with hash ff94d436). The CA certificate is stored
in a file without a special extension (e.g. ff94d436.0
where 0 is the hash bucket index), usually in PEM
format.

Namespace policy files define the namespace the
CA is allowed to use when signing certificates.
Namespace is usually specified using regular expres-
sions with a constant prefix. For example, regular
expression “/C=HR/.*” in the policy rule matches
all certificates signed by given CA whose subject
starts with “/C=HR/”. Original format for names-
pace policies is Globus Extended ACL (EACL).
Such policy is stored in a file with the extension
signing policy (e.g. ff94d436.signing policy). Pol-
icy in newer namespace constraints file format[7] is
distributed in files with extension namespaces (e.g.
ff94d436.namespaces). At the moment only the
Globus EACL format is used for checking names-
pace policies.

Certificate Revocation List (CRL) lists serial
numbers of revoked certificates and is digitally
signed by the CA. Since CRL changes over time,
it is not distributed in the CA package. Instead, a
file with the extension crl url (e.g. ff94d436.crl url)
contains the URL where the CA publishes latest
CRL. New CRL is periodically downloaded, ver-
ified and installed into file with r extension (e.g.
ff94d436.r0 where 0 is the hash bucket counter).

Some additional information about the CA is in-
cluded in the info file (e.g. ff94d436.info), for ex-
ample: CA accreditation status and version, aliases
and dependencies between CAs (for multi level



CAs), official CA e-mail and URLs pointing to CA
certificate, CRL and RA web. As most of this is
already included in the CA certificate, info file is
relevant and used only for PMA management.

IV. APPLICATION SECURITY

Applications use the GSI through Generic Security
Services Application Program Interface[10] (GSS-
API). Unlike most other GSS-API implementa-
tions that use Kerberos as the backing mecha-
nism, Globus GSS-API is based on X.509 certifi-
cates and SSL protocol. This section describes the
most commonly used GSS-API C functions[11] and
their Globus implementation. Security session us-
ing GSS-API is usually a sequence of the following
function calls:

• gss acquire cred for loading certificates,

• gss init sec context or gss accept sec context to
establish a secure session,

• gss wrap and gss unwrap for secure exchange
of application data,

• gss delete sec context for closing the session.

As the name suggests, gss acquire cred is used to
acquire security credential (certificate) to be used
in the session. Globus GSI library searches for a
valid certificate in the filesystem using the following
search order:

• service certificate

• host certificate

• user proxy certificate

• user certificate

After a valid certificate is read, client and server
proceed to establish a security context with re-
quested parameters. This process is asymmetric in
the sense that client initiates the communication by
calling gss init sec context. The function generates
an output token (buffer) and it is the responsibility
of the client to transport it to the server, most prob-
ably over some kind of network socket. This makes
GSS-API independent of the underlying communi-
cation mechanism. Server application accepts the

connection from the client, receives the initial to-
ken and passes it as input to gss accept sec context.
This function also generates a response in form of
an output token. Server forwards this token to the
client and this token exchange continues until the
context is fully established (indicated by the return
value of functions).

Token exchange between client and server can be
split into two phases:

• SSL handshake,

• proxy delegation.

During SSL handshake, client and server ex-
change standard SSL messages starting from Client
Hello up to Finish[13]. As expected, Server Cer-
tificate message contains the (proxy) certificate
of the server, Certificate Request lists the CAs
server recognises and Client Certificate contains the
client’s proxy certificate. Although there are no
changes in the protocol itself, most of the standard
available SSL libraries would not support this ex-
change due to use of proxy certificates. Standard
SSL libraries recognise only two types of certifi-
cates:

• CA certificates (possibly multilevel),

• End entity certificates (EEC) - host or user
certificates.

Two types are distinguished by the X.509 critical
extensions which allow a CA certificate to sign user
certificates (or other CA certificates). When a stan-
dard SSL library tries to verify a proxy certificate
it sees an EEC signed by another EEC. Since this
is not allowed in the classical PKI model, verifica-
tion of the whole certificate chain fails. In order to
support proxy certificates, Globus GSS-API imple-
mentation overrides the certificate verification rules
of the underlying SSL library (OpenSSL). In ad-
dition to standard certificate checks (lifetime and
digital signature), verification of proxy certificate
chains introduces the following changes:

• key usage critical extension check is ignored
in user and proxy certificates to allow proxy
certificates to be verified,

• mixing proxies of different types (GT2, GT3)
is not allowed,



• CRLs are checked for revocation of user and
CA certificates,

• signing policy is checked for user and respec-
tive CA certificate,

• critical extensions for proxy certificates are
checked (maximum proxy chain length, proxy
policy),

• maximum length of non proxy certificate chain
is checked (if defined in the CA certificate).

If the SSL handshake finishes successfully, peers
proceed with the delegation protocol[12]:

1. Client sends character D if it wants delegation.
If delegation was not requested by the appli-
cation, client sends 0 and the session goes into
established state.

2. If delegation is requested, server generates a
certificate request and sends it to the client.

3. Client checks the request and if no problems
are found, signs the request and sends the new
proxy certificate to server.

Certificate request and signed proxy are ex-
changed using DER encoding. Note that private
key is never transfered over the network (it al-
ways stays on the server) so the delegation protocol
is safe even if used over unencrypted connection.
Message integrity is, however, required in order to
protect against connection hijacking.

Application can influence the properties of the
session through a set of flags passed to session es-
tablishment functions. Available flags are:

• anonymity - client certificate is not passed to
server,

• confidentiality - strong encryption algorithm is
requested,

• delegation - delegate full proxy,

• limited delegation - delegate a limited proxy,

• SSL compatibility - delegation is skipped alto-
gether,

• limited proxy check - whether to accept peer
with limited proxy,

If confidentiality flag is not set, encryption is dis-
abled by setting NULL (none) cipher as the pre-
ferred one in the first SSL message (ClientHello).
As a result, only integrity protection might be avail-
able in the subsequent calls to gss wrap (server
might not accept proposed NULL cipher). Also
note that some flags can’t be used together. For
example, it is not possible to delegate a proxy and
remain anonymous; SSL compatibility is in conflict
with delegation because delegation protocol is not
defined in SSL standard.

After the secure session is established, client and
server call gss wrap to protect data for transfer. De-
pending on the parameters this can include both
integrity and confidentiality protection or just in-
tegrity protection. If NULL cipher was selected
during session establishment, data will have Mes-
sage Authentication Code (MAC) appended. If
some other cipher was selected, data will first have
MAC appended and then both data and MAC are
encrypted using the selected algorithm. MAC pro-
tection is a secure hash of several components:

• secret session key - sender authentication,

• application data - protection against changes,

• sequence number - protection against replay.

Output token returned by this function is a stan-
dard SSL application data record. Receiving end
passes this token to gss unwrap function for pos-
sible decryption and MAC verification. Function
returns a buffer containing original data and flag
indicting type of protection used.

To close the session, either side can call gss dele-
te sec context. This function releases the allocated
data structures and returns a final token contain-
ing an SSL close notification alert message used to
inform the other end of the session termination.

V. CONCLUSION

Globus GSS implementation described in the pre-
vious section shows some problems with the GSS-
API specification. Since GSS-API was originally
designed with Kerberos mechanism in mind, some
Grid use-cases are not well covered by the specifi-
cation. For example, GSS-API does not allow the
server to influence the parameters of the session
(there is no input flags parameter). Globus works



around this by passing some input flags through
output flags parameter. Furthermore, GSS-API al-
lows delegation to happen only at the start of the
session. In some cases (long running jobs) asso-
ciation with the Grid service can last longer than
the usual proxy lifetime and some mechanism of
repeated delegation needs to exists. GSS-API also
does not define functions for importing and export-
ing credentials to files, only direct interprocess ex-
change is defined. Some of the extensions imple-
mented in GSI are described in [14] and might be
included in future versions of GSS-API specifica-
tion. In some sense, GSI implementation of the
GSS interface was a good test of the specification
that was intended to be general but in practice only
implemented with one backing mechanism - Ker-
beros.

In comparison to Kerberos realms, Grid PKI in-
frastructure is somewhat more lightweight. This
is mostly due to the fact that CAs currently op-
erate in offline mode. CA server is contacted only
a few times a day to download the fresh CRLs,
while most Kerberos operations require the Ker-
beros server to be online all the time. Proxy gener-
ation is also an offline operation, as is user/service
authentication. Creation of Kerberos tickets and
user/service authentication, on the other hand, re-
quire a working Kerberos server. This can create a
high load on the Kerberos servers and Grid experi-
ence show that such centralised services often lead
to reliability problems. In this case, malfunctioning
Kerberos server can break authentication for some
users or services making parts of the infrastructure
unavailable. Things get even more complicated as
the number of involved organisations increase (cur-
rent IGTF distribution includes around 70 CAs).
In Kerberos this would require establishing some
sort of online cross realm trust relationship, while
Grid PKI manages this in an offline manner. PMAs
establish trust with new CAs and distribute the
new list of accredited CAs on monthly bases. All of
this suggest that PKI is a better suited for authen-
tication in large loosely coupled distributed systems
like the Grid.

References

[1] V. Welch, F. Siebenlist, I. Foster, J. Bresna-
han, K. Cajkowski, J. Gawor, C. Kesselman, S.

Meder, L. Pearlman, S. Tuecke, “Security for
Grid Services”, High Performance Distributed
Computing, 2003.

[2] J. Gawor, S. Meder, F. Siebenlist, V. Welch,
“GT3 Grid Security Infrastructure Overview”,
2003.

[3] R. Housley, W. Polk, W. Ford, D. Solo, “In-
ternet X.509 Public Key Infrastructure Cer-
tificate and Certificate Revocation List (CRL)
Profile”, RFC 3280, 2002.

[4] S. Tuecke, V. Welch, D. Engert, L. Pearlman,
M. Thompson, “Internet X.509 Public Key In-
frastructure (PKI) Proxy Certificate Profile”,
RFC 3820, 2004.

[5] D. Groep, “Profile for Traditional X.509 Pub-
lic Key Certification Authorities with secured
infrastructure”, 2005.

[6] S. Chokhani, W. Ford, R. Sabett, C. Merrill, S.
Wu “Internet X.509 Public Key Infrastructure
Certificate Policy and Certification Practices
Framework”, RFC 3647, 2003.

[7] D. Groep, “Namespaces Format Specificati-
on”, 2006.

[8] D. Dobrenić, E. Imamagić, J. Ivankov, “SRCE
Certification Authority Certificate Policy and
Certification Practice Statement”, 2006.

[9] K. Christos, “SEE-GRID Certification Au-
thority Certificate Policy and Certification
Practice Statement”, 2004.

[10] J. Linn, “Generic Security Service Application
Program Interface Version 2, Update 1”, RFC
2743, 2000.

[11] J. Wray, “Generic Security Service API Ver-
sion 2 : C-bindings”, RFC 2744, 2000.

[12] V. Welch, “Grid Security Infrastructure Mes-
sage Specification”, 2004.

[13] A. Freier, P. Karlton, P. Kocher, “The SSL
Protocol Version 3.0”, Netscape Communica-
tions Corp., 1996.

[14] S. Meder, V. Welch, U. Chicago, S. Tuecke, D.
Engert, “GSS-API Extensions”, 2003.


