

NanoSIMS imaging of biological samples: technique and challenges for sample preparation

Dirk Schaumlöffel

Université de Pau et des Pays de l'Adour / CNRS Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 IPREM, Pau, France

WRAP-UP MEETINGAccumulation, Subcellular Mapping and Effects of Trace Metals in AquaticOrganisms (AQUAMAPMET)Zagreb, 2-3 December 2019

Université de Pau et des Pays de l'Adour / CNRS

IPREM - Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux

Staff

135 permanent 140 non permanent

3 scientific poles

- Analytical Chemistry, Physical Chemistry, Theoretical Chemistry
- Chemistry and Microbiology of the Environment
- Physical Chemistry of Surfaces and Polymer Materials

Université de Pau et des Pays de l'Adour / CNRS

Université de Pau et des Pays de l'Adour / CNRS

IPREM 1

- Introduction
- 2 NanoSIMS technique
- Challenges for sample preparation

Combining microscopy/imaging with ...

5

Combining microscopy/imaging with

element/molecule specific techniques

Combining microscopy/imaging with

element/molecule specific techniques

SIMS : Secondary Ion Mass Spectrometry

Sample

Nano Secondary Ion Mass Spectrometry (NanoSIMS)

The NanoSIMS 50L instrument

part of the Mass Spectrometry Center in Pau, France (MARSS)

- High lateral resolution: 50nm in Cs⁺, 40nm in O⁻
- High Sensitivity <u>together with</u> High Mass Resolution <u>and</u> small spot size
- Parallel Detection: 7 masses

The NanoSIMS: a scanning Ion Microprobe with a multicollection mass spectrometer

Sample

1454	1449	1411	1347	1239
226861	224906	219379	213200	206396
0.637%	0.640%	0.639%	0.628%	0.597%
1500	1414	1341	1163	
222784	220467	212399	204234	198130
0.669%	0.637%	0.627%	0.566%	
1414	1265			803
219466	212200	204972		194159
0.640%	0.593%			0.412%
1326	1108			789
211556	204599	198366	193922	192569
0.623%	0.539%	0.471%	0.421%	0.408%

Primary Ion Beam - Secondary Ion Yields

O ⁻ primary ions																	
н		positive secondary ions													He		
Li	Be		Cs ⁺ primary ions negative secondary ions B C N O F												F	Ne	
Na	Mg											AI	Si	Р	S	Cl	Ar
к	Са	Sc	Ti	v	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac															

Cs⁺ primary ion source

Classic NanoSIMS application (e.g. cell imaging): **C**, **N** (via CN⁻), **O**, **S**, **P**, **Se** and their stable isotopes for tracer studies.

O⁻ primary ion source

Imaging of major and trace metals is possible: Ca, Mg, Al, Mn, Cr, Cu, Fe, Ni ...

New O⁻ RF plasma primary ion source on NanoSIMS

- **Higher beam density** = better sensitivity for (trace) metals (Ca, Fe, Cu, Mn...)
- Higher lateral resolution : 40 nm
 - = sharper images enabling the observation of smaller details
 - Long term stability less maintenance

Characteristics of NanoSIMS

- Allmost all Elements (from H, D, T,... up to Pu), but with different sensitivity
- **High Sensitivity**: down to ppb in spot analysis, ppm in imaging,
- High resolution imaging: down to 40 nm lateral resolution, access to 3D analysis with depth resolution of 10-15nm.
- Isotopic analysis: e.g. metabolic pathways and activity in biology

- Quantification difficult: matrix effects
 - Sample preparation for biological samples is challenging

Preparation of (biological) samples for NanoSIMS

NanoSIMS analyses require :

- Flat samples to avoid artifact during ionization
- **Dehydrated samples** stable in ultra-high vacuum (10⁻¹¹ mbar)
- Conductive sample surfaces to avoid charging effects from the ion beam

How these requirements can be compatible with biological cells or tissue ?

Sample preparation methods for transmission electron microscopy can be adapted for NanoSIMS

Biological sample preparation (similar to TEM)

Analysis at room temperature under vacuum: sample must be dehydrated and fixated

Chemical fixation

Glutaraldehyde Formaldehyde Osmium tetroxide

Cryofixation

high pressure freezer tissues (up to 6 mm diameter, 200 µm thick)

Dehydration

Solvent baths (acetone or ethanol/water) with increasing solvent concentrations

Resin embedding

Solvent baths with increasing resin concentrations

Dehydration

Cryo-substitution lyophilization

Resin embedding

Solvent baths with increasing resin concentrations

Ultramicrotomy

300 nm sections for NanoSIMS 70 nm sections for TEM/X-EDS

Equipment at Bordeaux Imaging Center

Biological sample preparation (similar to TEM)

Analysis at room temperature under vacuum: sample must be dehydrated and fixated

Chemical fixation

Glutaraldehyde Formaldehyde Osmium tetroxide

Cryofixation

high pressure freezer tissues (up to 6 mm diameter, 200 µm thick)

Dehydration

Solvent baths (acetone or ethanol/water) with increasing solvent concentrations

Resin embedding

Solvent baths with increasing resin concentrations

Dehydration

Cryo-substitution lyophilization

Resin embedding

Solvent baths with increasing resin concentrations

Ultramicrotomy

300 nm sections for NanoSIMS 70 nm sections for TEM/X-EDS

Equipment at Bordeaux Imaging Center

Cryofixation by high pressure freezing

States of water depending on pressure and temperature

At a pressure of 2045 bar the melting point of water is lowered to -22 °C • and the temperature for homogenous nucleation is reduced to -92 °C.

Kanno H et al. Science 189: 880-881 (1975)

High pressure freezing allows synchronized pressurization (2100 bar) and cooling of the sample within **20 ms** in a highly reproducible manner:

- (1) lowering of the freezing point,
- (2) reduction in the rate of ice crystal formation, and

(3) slowing of the growth of ice crystals

At 2100 bar water is 1500 times more viscous than at atmospheric pressure. This reduced considerably formation of ice crystals. Amorphous ice is formed.

Water is transformed in the vitreous state (amorphous ice) and thus the cellular ultrastructure is fixed and preserved.

Why cryofixation?

- Reduced Fixation Artifacts
 - Membrane blisters
 - Mesosomes
 - Nuclear equivalent

Reduced Shrinkage

- Reduced extraction of cellular components
 - Lipids
 - Proteins
 - Proteoglycans
 - Metals

Biological sample preparation (similar to TEM)

Equipment at Bordeaux Imaging Center

Preparation of (biological) samples for NanoSIMS

NanoSIMS analyses require :

• Flat samples to avoid artefacts during ionization

Sections prepared with an ultramicrotome or polishing

• Dehydrated samples stable in ultra-high vacuum (10-11 mbar)

Dehydrated and embedded in epoxy resin

• Conductive sample surfaces to avoid charging effects from the ion beam

Ultrathin sections (< 500 nm) placed on conductive silicon wafer pieces

Thicker samples are metal (Au, Pt) coated with sputter coater (nm), similar to SEM

Biological sample preparation in the AQUAMAPMET project

Chemical fixation due to the geographical distance between sampling (Croatia) and preparation (BIC, Bordeaux, France)

Chemical fixation

Glutaraldehyde Formaldehyde Osmium tetroxide

Cryo fixation

high pressure freezer

tissues (up to 6 mm diameter, 200 µm thick)

Dehydration

Cryo-substitution lyophilization

Resin embedding

Solvent baths with increasing resin concentrations

Ultramicrotomy

300 nm sections for NanoSIMS 70 nm sections for TEM/X-EDS

Equipment at Bordeaux Imaging Center

Dehydration

Solvent baths (acetone or ethanol/water) with increasing solvent concentrations

Resin embedding

Solvent baths with increasing resin concentrations

Detailed protocol for sample preparation in the AQUAMAPMET project

Correlative imaging: <u>TEM</u> and <u>NanoSIMS</u>

Cs source

Thank you for your attention