Involvement of hDPP III into the oxidative stress Keap1-hDPP III interaction

Sanja Tomić Institut Ruđer Bošković Zagreb, Croatia Involvement of hDPP III into the oxidative stress Keap1-hDPP III interaction

PDB_id **2FLU**

Hydrogen bond analysis

	Arg623
Głu480	Avg620
	rg624

Residue	Electroneutral	0,1M NaCl	0,3M NaCl
Arg620	35.3	24.6	63.8
Arg623	118.3	108.8	139.8
Arg624	134.1	145.0	109.5

Hydrogen bond occurences (%) between amino acids in the ETGE loop and the rest of the protein during MD simulations

Binding of hDPP III to the Kelch domain

Adaptive steered MD simulations (ASMD)

• 10 replicas

 The work needed to releases the loop is lower in the less compact forms of DPP III.

Interactions of the electronegative loop tip with the positively charged arginines

ASMD simulations of the hDPP III mutants

ETGE loop detachment is responsible for a decrease in K_d for DPP III-R623W - Kelch binding

Significantly lower Kd for R623W mutant measurement of initial fluorescence change

	DPP III	$K_{\rm d}$ / nM
	WT	826 ± 108
rtal	►R620C	746 ± 194
Po	R623L	394 ± 138
0	•R623W	5 ± 18
С Ш		

DPP III ETGE loop binding to Kelch domain of KEAP1

SUMMARY

• ETGE loop crucial for hDPP III binding to the Keap1 Kelch domain.

hDPP III - Kelch binding is two step process consisting of:

1. endergonic loop translocation

2. exergonic hDPP III – Kelch domain interactions

- ΔETGE decreased binding affinity 1150%
- Mutation R623L, R623W increase binding affinity 25 90%

ITC titration of DPP III into Kelch domain

KD (M)	∆H (kJ/mol)	∆G (kJ/mol)	-T∆S (kJ/mol)
0.833E-06	-8.32	-34.7	-26.4
1.13E-06	-12.2	-34	-21.8

ITC titration of the Kelch domain into DPP III

KD (M)	∆H (kJ/mol)	∆G (kJ/mol)	-T∆S (kJ/mol)	Offset (kJ/mol)
1.76E-06	-13.2	-32.9	-19.7	-17.4
8.82E-07	-8.21	-34.6	-26.4	-1.04

Potential sources of problems

DPP III

Kelch

Protein purityDimerization

Mutations found in cBioPortalu for cancer genomics

Mutations in the ETGE loop

Kd values determined from initial fluorescence change

,	DPP III	Kd (nM)
	WT	826 ± 108
rta 	P479S	128 ± 47
о Ч	G482C	1220 ± 450
BIO	Q484H	219 ± 181
U U		

Initial fluorescence measurement on MST instrument

Next steps

- Produce new wt and mutated proteins and purify by SEC (IEC)
- (crystallization, MST, ITC)
- Label new batch of Kelch
- Measure initial fluorescence change (MST) again reproducibility
- Repeat ITC (protein purity, buffer, temperature)
- MD simulations analysis to support experimental data

Kelch – DPP III kompleksi

DPP III: WT, E480Q, T481M, P479S, G482C Simulations – 700 ns = 300 ns + 2.200 ns

MMGBSA calculations

Alignment to the upper domain (420-660AA) WT – gray

P479S – green **G482C** – yellow

> Alignment was performed for the structures sampled at the part of the trajectories for which the lowest MMGBSA energies were determined.

Alignment of several G482C-Kelch complexes structures (from different trajectories). The structure coloured gray is from the 'minimum MMGBSA energy' section. Alignment was performed to the upper hDPP III domain.

Alignment was performed to the upper hDPP III domain.

Aligment of the Kelch complexes with P479S (gray) and WT (orange).

Structures from the part of the trajectories for which the lowest MMGBSA energies were determined. Aligment of the Kelch complexes with G482S (gray) and WT (orange).

Structures from the part of the trajectories for which the lowest MMGBSA energies were determined. Alignment was performed to the upper hDPP III domain.

D	А	А	D
E480	S555	R624	C434
	R415	R624	H436
	R483	Q473	G574
	S508	R620	D479
T481	S1006	0.6	
Q486	N387		
	R380		
P479	Q530		
E483	R380		
	N387		
	S363		
Q473	Q530		
C482	Y334		
N478	R483		
T481	S602		
10	10.2		

G482S-Kelch

Intermolecular hydrogen bonds

Hydrogen bond analysis performed for the 20 ns long trajectory for which the lowest MMPBSA energies were determined.

 $\Delta G_{MMGBSA}^{20} = -55 \pm 7 kcal/mol$

 ΔG_{MMGBSA}^{TOT} = -43,0 kcal/mol

D	А	А	D
E480	S555	S487	D385
	R415	Q484	Y334
	R483	R624	C434
	S508	K498	D385
Q486	N387	E474	H575
	Y334	R620	T481
T481	S602	0	.8
E483	R380		
S479	Q530		
D472	R363		
T475	R363		
E581	R459		
N470	R363		
11.4			

P479S-Kelch

Intermolecular hydrogen bonds

Hydrogen bond analysis performed for the 20 ns long trajectory for which the lowest MMPBSA energies were determined.

 $\Delta G_{MMGBSA}^{20} = -50 + 8 kcal/mol$

 ΔG_{MMGBSA}^{TOT} = -39,6 kcal/mol

D	А	А	D
E480	S555	Q473	H575
	R415	R620	D479
	R483	Q486	D389
	S508		D387
Q484	R380	R490	P384
	S363		D385
Q486	N387	Q484	N381
P479	Q530		R380
Q473	R336		S363
E483	N416	E474	H393
1485	N387	R624	C434
E619	T481		H436
E474	H575	R623	T481
G482	S602	5.	.1
10.7			

WT DPP III - Kelch

Intermolecular hydrogen bonds

Hydrogen bond analysis performed for the 20 ns long trajectory for which the lowest MMPBSA energies were determined.

 $\Delta G_{MMGBSA}^{20} = -80 + 9 kcal/mol$

$$\Delta G_{MMGBSA}^{TOT} = -50,6 \text{ kcal/mol}$$

G482C-Kelch – hydrogen bonds

To be done

Experimental measurements for the computational studied DPP III mutants in cancer (?P479S mutant – resolve discrepancy).

Experimental and theoretcal studies of the '**relevant'** Kelch mutants found in cancer and their complexes with DPP III