Total mercury (THg) concentrations in water, sediment and biota:

General principles, sampling, preparation and methods of analysis

Zorana Kljaković-Gašpić

Institute for Medical Research and Occupational Health (IMROH)

KICK-OFF MEETING

Integrated evaluation of aquatic organism responses to metal exposure: gene expression, bioavailability, toxicity and biomarker responses (BIOTOXMET)

Zagreb, 11th October 2021

Outline

- General aspects of total mercury analysis
- Sampling and storage
- Sample preparation: pre-processing, digestion
- Analytical methods
- Future prospects

General aspects

Determination of THg in environmental samples involves the following steps:

- (a) sample collection;
- (b) sample pretreatment/preservation/storage;
- (c) liberation of mercury from its matrix;
- (d) extraction/clean-up/pre-concentration;
- (e) quantification

Each of these 5 steps requires that we adhere to the general requirements:

- High purity reagents (Suprapur or 'low in mercury')
- Deionized water (for rinsing, preparation of standards, dilution of samples, etc..)
- Inert plastic (PTFE) or glass cookware and laboratory ware
- Rigorous cleaning procedures of laboratory ware and other equipment!!!
 - \rightarrow necessary to minimize contamination; common to all matrices:
 - (1) aqua regia treatment followed by soaking in diluted (\sim 5-10%) HNO₃ for a week;
 - (2) soaking in a hot oxidizing mixture of KMnO₄ and $K_2S_2O_8$, NH₄OCI rinsing; soaking for a week in 5M HNO₃
 - (3) soaking in a 1:1 mixture of concentrated chromic and nitric acids for a few days;
 - (4) soaking in BrCl (mixture of HCl and KBrO₃);
 - (5) Teflon usually cleaned in hot concentrated HNO₃ for 48 hours, followed by soaking in dilute HNO₃ (5%) etc...
- Storing in a mercury-free place, preferably sealed in mercury-free plastic bags

Total mercury analysis at IMROH

Primary tasks:

measurement of total mercury (THg) in **5 different media**:

- water samples (total and dissolved)
- > sediments
- ➢ fish muscle
- fish intestine
- intestinal parasites (acanthocephalans)

Water is the most demanding of these media \rightarrow Hg concentrations in natural waters are very low (nanogram-per-liter levels)

 \rightarrow difficult to get accurate and reliable results!!!

Natural waters are susceptible to contamination from many sources:

- improperly cleaned equipment, •
- improper sample-collection techniques, ٠
- contaminated reagents ٠
- atmospheric inputs (dust, dirt, rain) ٠

Clean procedures \rightarrow necessary to minimize contamination!!!

Sampling: natural waters

MethodsX 5 (2018) 1017-1026

Method Article

Cleaning and sampling protocol for analysis of mercury and dissolved organic matter in freshwater systems

Andrea G. Bravo^{a,*,1}, Dolly N. Kothawala^{b,1}, Katrin Attermeyer^b, Emmanuel Tessier^c, Pascal Bodmer^{d,e}, David Amouroux^c

^a Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Barcelona, Spain

^b Limnology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden

CNRS/ UNIV PAU & PAYS ADOUR, Institut des Sciences Analytiques et de Physico-Chimie pour

l'Environnement et les Materiaux, UMR5254, MIRA, Pau, France

^d Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany

^e Chemical Analytics and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany

Bravo, A. G., Kothawala, D. N., Attermeyer, K., Tessier, E., Bodmer, P., & Amouroux, D. (2018). Cleaning and sampling protocol for analysis of mercury and dissolved organic matter in freshwater systems. MethodsX, 5, 1017–1026. doi:https://doi.org/10.1016/j.mex.2018.08.002

Sampling: cleaning procedures

<u>The cleaning procedure</u> for the amber borosilicate bottles and other plastic and glass utensils used to store water and analyze mercury species should be carried out in a **series of three baths** :

- Soaking in mild solution of detergent (Kemex; Kemika) for 1 h in ultra-sonic bath or 48 h without sonification
- Rinsing with Milli-Q water
- Soaking in a 10% (v:v) HNO₃ (Merck, p.a., distilled at sub-boiling temperature) bath for 2 h in ultra-sonic bath or 48 h without sonification
- Rinsing with Milli-Q water
- Soaking in a **10%** (v:v) **HCI** (Merck, p.a., distilled at sub-boiling temperature) bath for 2 h in ultra-sonic bath or 48 h without sonification
- rinsing with Milli-Q water

How to minimize potential sources of contamination during sampling:

- Wear clean, no-talc gloves during all operations
- Use metal free apparatus and materials (PTFE or glass bottles)
- All sampling equipment should be double bagged to reduce risk of contamination
- Avoid airborne particulate matter (dirt, dust, nearby bridges, wires and poles)
- Avoid cigarette smoke
- Avoid vapors from automobile exhaust
- Avoid breathing directly into the sample (dental mercury amalgam fillings)

Water sampling

Material required for 1 location: Summary of the samples collected:

Field blanks \rightarrow to evaluate the potential for contamination associated with the field methods, materials used, and sampling environment.

- processed in the same manner and under the same environmental conditions as environmental samples

- > Water samples were acidified (HCl, Suprapur) and stored at +4°C in clean plastic bags with zipper
- Analyzed as soon as possible, but can be stable for 30 days

Sample preparation: pre-processing

1. Natural waters:

Preservation: acidified in the field (HCl, Suprapur)

- Biological material: dissection conducted during the field trip; stored at -18°C or -80°C (IRB team); no freeze-drying
- 3. Sediments:

collected in to clean zip bags, labeled and stored at -18°C in laboratory: freeze-drying and sieving

Freeze-drying HETOSIC (Heto Ltd., Denmark) Sieved (Ø=2 mm) to remove gravel and branches

Sample preparation: digestion of samples

Principal steps for the determination of THg in water samples

Decomposition of samples for the THg analysis:

- 1. Natural waters:
- depends on the instrument used

AMA 254: <u>no decomposition</u> required \rightarrow decomposition occurs in the instrument itself, as part of the analysis

ICP-MS: decomposition with concentrated HNO₃ (Ultraclave IV, IMROH)

Sample preparation: digestion of samples (2)

2. Biological material (fish muscle, intestine, acanthocephalans)

wet decomposition with acids:

- ✓ intestine, acanthocephalans: digestion at IRB facilities due to small amount of biological samples (agreement VFM and ZKG)
- ✓ muscle tissue of fish: IMROH (Ultraclave IV System)
- 3. Sediments:

Hg in sediments associated with humic matter and/or sulphides (HgS)

 \rightarrow strong oxidizing agents required!! (HN0₃, HCl, BrCl, H₂S0₄, HCl0₄, H₂O₂, V₂O₅, KMnO₄, K₂Cr₂O₇)

wet decomposition with Aqua regia (HNO_3 :HCl = 1:3) in Al-block on 70-90°C (IMROH)

Sample preparation: digestion of biological material

High pressure microwave destruction of samples (fresh or freeze-dried) in a high-pressure microwave device using method for biological samples

UltraCLAVE IV (Milestone, Italy)

- Samples of fresh biological material (0.250-0.500 g) are weighed in quartz tubes
- 4 ml of concentrated HNO₃ (65%; S.p.) is added and left to react for 10 to 15 minutes; then 2 ml of deionized water is added
- Tubes are closed with a Teflon stoppers and placed on a stand which is immersed in a stock solution (water, H₂O₂, H₂SO₄) which serves to conduct the microwaves more evenly
- **Quality Control**: Blanks and Certified Reference Materials digested in the same manner with every batch of samples!

Temperature program for destruction of biological samples in high-pressure microwave device UltraCLAVE IV (Milestone, Italy)

	t (min:s)	E (W)	T ₁ (°C)	T ₂ (°C)	p (bar)	•T _{max} = 220°C
1.	3:30	700	70	60	100	$\bullet P_{max} = 120 \text{ bar}$
2.	15:00	1000	180	60	100	•Number of samples _{max} – 40 •Required time: ~2.5 h
3.	10:00	1000	220	60	120	
4.	30:00	1000	220	60	120	
5.	40:00	0	30	25	20	

t - time, T_1 - set temperature, T_2 - temperature in the outer vessel,

E - microwave radiation power, p - pressure in the reaction vessels

Sample preparation: digestion of sediments

TECATOR: Aluminium block with 40 slots Autostep 1012 Controller

Wet digestion in Al-block:

- Sediment samples (0.100–0.150 g) are weighed into quartz tubes;
- 3 ml of Aqua-regia (HNO₃:HCl = 1:3) is added and mixture is allowed to react overnight.
- After addition of 1 ml of deionized water, the tubes are closed with a Teflon-coated stoppers, placed in the Aluminum block and heated for 5 hours at 90°C.
- After cooling, the samples are made up with Ultrapure water to a total volume of 20 mL and stored at room temperature.
- **Quality Control**: Blanks and Certified Reference Materials digested in the same manner with every batch of samples!

Common analytical techniques for the analysis of Total mercury:

- Atomic Absorption Spectrometry (AAS): GF-AAS, CV-AAS Cold Vapor Atomic Absorption Spectrometry (CV-AAS)
 - Total mercury analyzer (Direct thermal decomposition Gold Amalgamation – Cold Vapor Atomic Absorption Spectrometry)
- Atomic Fluorescence Spectrometry (AFS): CV-AFS
- Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)
- Neutron Activation Analysis (NAA)
- Gas Chromatography (GC): GC-ECD (GC with Electron Capture Detector)

•

Sample analysis: AMA 254 Total Mercury Analyzer

• Principle: Direct thermal decomposition – Gold Amalgamation – CVAAS

AMA 254 Mercury Analyzer (LECO, Korea)

- Application: mercury content analysis in solid, liquid and gaseous samples (direct measurements are possible)
- LOD = **0.003 ng** Hg

Scheme of the AMA 254 spectrometer:

(1) Sampling boat, (2) decomposition furnace, (3) catalytic column, (4) gold amalgamator, (5) releasing furnace, (6) mercury cathode lamp, (7) optical cell system, and (8) detector

(Source: Spěváčková et al. (2004). *Analytical and Bioanalytical Chemistry*, 380(2), 346–350. doi:10.1007/s00216-004-2739-2)

AMA254 Total Mercury Analyzer: Results

Datum: 17.08.2021.		Napomena: vrijednosti THg u svim uzorcima (filtriranim i nefiltriranim) su na granici detekcije metode																
Uzorci: Filtrirane i nefiltrirane priroc		lne i otpad	ne vode s k	(rke oko Kr	nina													
Analitičar: Zo	orana Kljaković-Gašpić																	
Instrument:	AMA-254 Mercury analy	ser (Leco li	nc.)															
	Standard	ng Hg	Absorban	Average					i									
	concentration (µg/L)			blank	0,120)												
				absorban														
				ce	0,100	D	v = 0.0205	x + 0 0004	/									
Blank	0	0.0029	0.0002															
-	0	0.0099	0.0002	0.0002	0,0800 g	P2 - 0.00												
STD 1	0.2134	0.02134	0.0006		anc		к-=	0,99										
	0.2134	0.02134	02134 0.0005		ຊີ 0,0600	0												
STD 2	0.8536	0.08536	0.0014		Å Å													
0.02	0.8536	0.08536	0.0016		0,0400	5												
STD 3	7,1133	0.7113	0.0142		0.020	,												
0100	7 1133	0 7113	0.0144		0,020		`											
STD 4	21 34	2 134	0.0497		0.000													
5101	21,31	2,134	0.0500		0,000	0	1	2	3 4	5								
STD 5	21,34 21 34*200ul	4 268	0,0500		-		Т	otal mercury	y (ng)									
5105	21,34 200µL	4 268 0 1062																
Sample	21,34 200με	4,200	Aliquot	Absorban	Absorban	Total Ho	Blank	AVERAGE										
campio			(mL)	ce	ce	(ng)	substituted	concentra										
					(Sample-		concentratio	tion (ug/L)										
					Blank)		n (ug/L)											
NIST 1641e		r=10	0,10	0,0214	0,02120	1,0291	102,9		Certified val	Range								
		-	0,10	0,0213	0,02110	1,0293	102,9	102,9	101,6 µg/L	99,9-103,3								
BLF_KRS	Krka river source	Filtrirano	0,5	0,0004	0,0002	0,0098	0,020											
BLF-KRK	Krka River Knin	Filtrirano	0,5	0,0006	0,00040	0,0195	0,039											
KRS_F	Krka river source	Filtrirano	0,5	0,0005	0,00030	0,0146	0,029											
KRK_F	Krka River Knin	Filtrirano	0,5	0,0004	0,00020	0,0098	0,020											
KBL_F	Krka Brljan Lake	Filtrirano	0,1	0,0004	0,00020	0,0098	0,098											
TOR_F	tributary Orašnica	Filtrirano	0,1	0,0005	0,00030	0,0146	0,146											
TBU_F	tributary Butišnica	Filtrirano	0,1	0,0003	0,00010	0,0049	0,049											
TKO_F	tributary Kosovčica	Filtrirano	0,1	0,0002	0,00000	0,0000	0,000											
IWW_F	industrial wastewaters	Filtrirano	0,1	0,0004	0,00020	0,0098	0,098											
BL-KRS	Krka river source	Nefiltrirano	0,5	0,0003	0,00010	0,0049	0,010											
BL-KRK	Krka River Knin	Nefiltrirano	0,5	0,0004	0,00020	0,0098	0,020											
KRS	Krka river source	Nefiltrirano	0,5	0,0005	0,00030	0,0146	0,029											
KRK	Krka River Knin	Nefiltrirano	0,5	0,0005	0,00030	0,0146	0,029											
KBL	Krka Brljan Lake	Nefiltrirano	0,1	0,0003	0,00010	0,0049	0,049											
TOR	tributary Orašnica	Nefiltrirano	0,5	0,0002	0,00000	0,0000	0,000											
TBU	tributary Butišnica	Nefiltrirano	0,5	0,0003	0,00010	0,0049	0,010											
тко	tributary Kosovčica	Nefiltrirano	0,5	0,0002	0,00000	0,0000	0,000											
IWW	industrial wastewaters	Nefiltrirano	0.1	0.0002	0.00000	0.0000	0.000											

Sample analysis: ICP-MS

- Water samples: an internal standard (IS) solution is added to a given sample volume and the samples are measured directly, <u>without dilution</u>
- **Biological samples** are diluted with $1\% (v/v) HNO_3 5-20$ times, depending on the matrix
- Sediment samples are diluted with 1% (v/v) $HNO_3 \sim 20$ times
- Internal standard of 2 μ g/L is added to all samples

Agilent 7500cx, Agilent Technologies

- High sensitivity
- Low detection limits \rightarrow LOD for Hg \approx 0.005 µg/L or lower
- Can analyze many other metals at the same time (about fifty elements in one run)
- Allows for verification by analysis of multiple isotopes
- Linearity of detector response in a large concentration range (through nine orders of magnitude)
- Internal standardization improves accuracy of results
- Requires small sample volume for analysis (~ 2-3 mL of sample solution)

Sample analysis: Processes in ICP-MS

Mass spectrometer

Schematic representation of the process in ICP-MS from sample input to mass analysis

ICP-MS: Results (1)

K21 ▼ : × ✓ f_x 53071888

	А	В	С	D	Е	F	G	Н	I	J	К	L	М	N
1			7 Li	7 Li	7 Li	7 Li	23 Na	23 Na	23 Na	23 Na	24 Mg	24 Mg	24 Mg	24 Mg 2
2	Date Acquired	Sample Name	(T3,#7)Raw Co	(T3,#7)Raw Co	(T3,#7)Raw Co	(T3,#7)Raw Co	(T2,#23)Raw C	(T2,#23)Raw C	(T2,#23)Raw C	(T2,#23)Raw C	(T2,#24)Raw C	(T2,#24)Raw C	(T2,#24)Raw C	(T2,#24)Raw C (
3	10:00 am	Dummy (1%HNO3)	906,72552	913,39221	886,72125	920,06287	41767,789	41972,703	41675,313	41655,355	3531,646	3590,5371	3627,2329	3377,1692
4	10:07 am	BI 1_P	856,7196	870,05145	850,05206	850,05524	41909,289	42403,965	41621,707	41702,18	3776,155	3907,3103	3677,2268	3743,9265
5	10:13 am	BI 2_P	878,94641	913,39191	886,72729	836,71997	41952,73	41484,508	41849,246	42524,434	3752,8369	3797,2939	3630,5688	3830,6489
6	10:19 am	BI 3_P	835,60571	826,71405	796,71448	883,38867	42077,559	43212,965	41665,293	41354,434	3642,7939	3553,8867	3530,5371	3843,9587
7	10:24 am	BI 1_MQH2O	756,71271	726,711	716,70929	826,71771	41108,109	41214,23	40926,336	41183,77	298,90289	306,6806	283,34738	306,6806
8	10:30 am	BI 2_MQH2O	774,49011	770,04779	786,71326	766,70935	41205,219	41304,563	41234,102	41076,996	362,24219	400,0275	330,01563	356,68359
9	10:36 am	BI 3_MQH2O	738,93268	776,71301	690,04181	750,04352	41285,281	41036,809	40929,926	41889,129	404,46411	400,01962	410,02042	403,35223
10	10:42 am	Kal 1_trav	5257,7432	5314,4326	5404,4546	5054,3418	3553137	3556873,3	3540223,8	3562314,5	51722480	51840232	51759460	51567756
11	10:48 am	Kal stap_trav	5395,583	5421,1436	5377,7871	5387,8184	3685064	3700050,8	3681519	3673622	53237632	52882464	53288040	53542368
12	10:53 am	Kor_1_trav	4978,7559	5034,3486	5024,332	4877,5864	3592082	3597811,5	3577918,3	3600516,5	53517928	53296660	53525492	53731644
13	10:59 am	Kor_stap_trav	4952,083	5131,0537	4800,9189	4924,2759	3600899	3594089	3603485,3	3605122,5	53854088	53969904	53880988	53711396
14	11:05 am	Rij_1_trav	5818,0269	5701,2407	5737,9312	6014,9102	2663144	2661338,5	2663683	2664410,3	87633200	88143000	87319072	87437520
15	11:11 am	Rij_stap_trav	5635,668	5597,8647	5644,5415	5664,5977	2670779	2660369,3	2683729,5	2668238	88152896	87840568	88582960	88035184
16	11:16 am	Pro_1_trav	5696,8042	5511,167	5988,0493	5591,1968	3952933	3931574	3937714,5	3989510,8	54735088	54989868	54514472	54700924
17	11:22 am	Pro_stap_trav	5757,9561	5614,5708	5684,5977	5974,6997	4001827	3989430,8	3993398,3	4022653,8	55264660	55064780	55578424	55150772
18	11:28 am	Mat_1_trav	5836,876	5801,3369	5874,667	5834,6245	4554514	4574011	4557572	4531959,5	48884208	49035080	48862560	48754996
19	11:34 am	Mat_stap_trav	5827,96	5921,3379	5544,5122	6018,0317	4527951	4504576,5	4553712	4525564	48580368	48676200	48452612	48612308
20	11:39 am	Plit_1_trav	2979,3201	2983,7178	2857,1499	3097,093	2626607	2638715	2630935,5	2610171,3	53013000	52954604	52861664	53222732
21	11:45 am	Plit_stap_trav	2807,0259	2783,6816	2867,0308	2770,3645	2602903	2614375,3	2609115	2585219,3	53071888	53273184	52908432	53034064
22	11:51 am	Koz_1_trav	4949,8442	4964,2954	4817,5718	5067,666	3775731	3794670,8	3769313,3	3763208,3	54590240	54512884	54952144	54305700
23	11:57 am	Koz_stap_trav	4904,3032	5077,6787	4817,6104	4817,6216	3796326	3762308,8	3805113,3	3821555,3	55067328	54835976	55266744	55099272
24	12:02 pm	sum_a_1_trav	13779,79	13828,75	14377,1	13133,521	47773640	48333344	47639972	47347600	31472970	31516766	31561462	31340682
25	12:08 pm	sum_a_2_trav	15033,47	14123,138	16561,988	14415,294	47478088	47508028	47148164	47778072	31054690	31064780	31121366	30977912
26	12:14 pm	sum_b_1_trav	17729,18	16754,498	17838,059	18594,99	45019300	44974244	45403324	44680320	29293570	29159840	29397670	29323196
27	12:20 pm	sum_b_2_trav	14102,24	14352,947	13929,119	14024,654	44549168	44035252	44933304	44678956	29077280	29014412	28997490	29219932
28	12:25 pm	Dummy (1%HNO3)	265,56741	273,34497	233,34518	290,01196	59314,129	58872,348	59983,656	59086,371	4756,4678	4777,6035	4730,9019	4760,8975
29	12:31 pm	SLRS-5_I	23420,891	23415,215	23328,648	23518,818	22961390	22986340	22972526	22925292	6488265	6496964	6482746,5	6485085,5
30	12:37 pm	Nist_I	88897,109	89217,664	88674,711	88798,938	8990115	8953847	9090391	8926106	2118304	2155568,3	2099024,5	2100318
31	12:43 pm	seronorm urin	9335,416	9426,6074	9393,25	9186,3936	206243600	205290850	206356580	207083380	3797464	3800844,5	3777481,5	3814064,5
32	12:48 pm	Dummy (1%HNO3)	375,5733	386,68533	366,68448	373,3501	76824,289	77553,766	76515,016	76404,086	5222,1782	5221,0776	5271,0903	5174,3652
33	12:54 pm	Rstd 1 Hg	416,68701	413,35281	453,35474	383,35342	72235,727	72350,844	71914,859	72441,5	5515,6699	5791,3555	5321,1533	5434,502
34	01:00 pm	Rstd 2 Hg	426,68781	440,02075	376,68503	463,3577	69994,32	69905,805	69199,68	70877,445	5374,4722	5444,5068	5361,1343	5317,7744
35	01:06 pm	Rstd 3 Hg	443,3555	453,35605	440,02213	436,68842	69711,977	71235,688	68087,953	69812,281	5888,0288	5961,4097	5931,3467	5771,3306
36	01:12 pm	Rstd 4 Hg	524,47083	543,36041	453,35406	576,69781	69132,406	68918,008	69688,305	68790,938	5370,0322	5447,8291	5304,4492	5357,8164
37	01:17 pm	Rstd 5 Hg	587,8125	540,02625	586,69745	636,71393	68814,477	68630,234	68881,281	68931,953	5613,4492	5584,5342	5657,9478	5597,8662
38	01:23 pm	Dummy (1%HNO3)	321,12561	286,67981	350,01495	326,68213	65948,289	65375,734	66587,867	65881,266	5163,269	4897,6084	5067,6914	5524,5078
39	01:29 pm	Rstd 1 Na,Ca,K,Mg	431,13199	430,01962	390,01724	473,35907	1355636	1354725	1352618,5	1359563,8	1527952	1521102,3	1532138,6	1530615
40	01:35 pm	Rstd 2 Na,Ca,K,Mg	443,3544	443,3551	400,01846	486,68976	3234997	3238477,8	3245693	3220820,3	3733847	3713945,8	3752016,5	3735580,3
41	01:40 pm	Rstd 3 Na,Ca,K,Mg	417,7977	446,68832	406,68558	400,01932	6341661	6356398	6389490	6279095	7321407	7288761,5	7363556,5	7311905
42	01:46 pm	Rstd 4 Na,Ca,K,Mg	467,80042	490,02536	440,0206	473,35541	12689120	12758236	12711131	12598001	14820050	14834093	14870343	14755713
43	01:52 pm	Rstd 5 Na,Ca,K,Mg	436,689	403,35574	453,35495	453,35626	24191300	24108658	24187806	24277434	28448530	28440706	28306696	28598202
44	01:58 pm	Dummy (1%HNO3)	294,45831	323,34937	296,67947	263,34595	67874,703	67819,789	68084,383	67719,938	5341,1289	5347,7856	5421,1685	5254,4326
	· · … 2	202 Hg no gas 205	5 TI no gas 2	208 Pb nog 110	714 209 Bi i	no gas 238	U no gas S	heet2 rez_g	raficki Svi r	ezultati Rez	ultati_ICPMS_1	10714 STD	u mjernim otop	pinama Shee

ICP-MS: Results (2)

Al vodest X/2 V V V V V 5 9000 1108 0.0 12 0.0	Ζ																										_					
4 1	3			ΔΙ			vodeni																									
S Nome Nom	ă.				vodeni		X/Sc	X/72Ge	X/74	X/Rh	X/Th	X/L u	X/Ir		35000	1 000																
6 0.000 1582 0.0 0.1 0.2 0.0 0.1 0.2 0.00000 0.0000	5				rodom		7000	A1200	7014	70101	7010	70 Eu	7.11																			
7 ST01 0.34 377 0.5 0.4 0	6			0.000	11984		0.3	12	0.9	0.2	0.1	0.1	0.3		30000	000		v - 599	281~+	17676				/					_			
8 STD2 0.89 STD2 0.9 0.9 0.0 0.1 2.4 0.0 0.1 2.4 0.0 0.1 2.4 0.0 0.1 2.4 0.0 0.1 2.4 0.0 0.1 2.4 0.0 0.1 1.4 0.0 0.0 0.1 2.4 0.0 0.1 1.4 0.0 0.0 0.0 0.1 2.4 0.0	7		STD1	0.304	39916		0.8	3.4	27	0.6	0.4	0.4	1.0					y - 330 D2	= 0.99	97												
9 5703 1386 00000 21 80 60 11 11 12 200000 10000 1000000 1000000 1000000 1	8		STD2	0.679	58788		1.2	5.0	3.9	0.9	0.6	0.6	1.4		25000	000 1			- 0,55	51			/									
10 ST04 3.85 20030 4.8 202 15.3 24 25.5 20000 11 ST05 6.7.2 (20000) (10000)	9		STD3	1 384	103476		21	8.8	6.8	1.5	11	11	2.4									/										
11 STOS 6.22 40.99 8.4 55. 0.7 6.0 4.3 4.4 9.9 13 STOF 13.84 (14.97) 33.8 119.21 (14.19) 39.9 119.22 110000 9.9 9.99	10		STD4	3 551	230953		4.8	20.2	15.3	3.4	2.4	2.5	5.5		20000	000					/								_			
12 STDE 13.26 19.20 61.2 11.7 62 64 16.8 14 STDE 13.26 194.00 10.4 42.7 17.3 30.0 40.000 50.000 60.000 50.000 50.000 50.000	11		STD5	6 723	409939		8.4	35.5	26.7	6.0	4.3	4 4	9.9								•											
31 STO7 23.38 192 (10.1 12.2 17.1 12.2 17.1 12.2 17.1 12.2	12		STD6	13 351	795802		16.2	68.1	52.1	11.7	82	8.4	18.8		15000	1 000																
14 STDB SSLSD SSL	13		STD7	26.349	1641027		33.8	139.2	104.1	24.2	17.1	17.3	39.0		4000				/													
16 10000 10000 10000 10000 20.000 10.000 20.000 40.000 50.000 60.000 10.00 100000 100000 100000	14		STD8	52,520	3146388		65.2	259.8	192.3	45.6	32.0	32.6	73.4		10000	000 1																
66 Nagob 09884 1.2.4 4.96 0.397 0.47 0.02 1.40 17 Oospectal 1767 0.45 1.22 1.00 0.999	15			bez std 7 i 8	58549		1.19	4.98	3.80	0.85	0.60	0.62	1.38																			
17 Objective 1976 0.43 1.22 1.23 0.29 0.21 0.29 0.99	16			Nagib=	59881		1.24	4.96	3.67	0.87	0.61	0.62	1.40		5000	1 000	1															
18 BSG= 0.99997 1.000 0.999	17			Odsiečak=	17676		0.43	1.82	1.36	0.29	0.21	0.21	0.49				×															
19 10 <th< td=""><td>18</td><td></td><td></td><td>RSQ=</td><td>0.99967</td><td></td><td>1.000</td><td>0.999</td><td>0.999</td><td>0.999</td><td>0.999</td><td>0.999</td><td>0.999</td><td></td><td></td><td>0 000</td><td></td><td>10 000</td><td>20</td><td>000</td><td>30.00</td><td>0</td><td>40 000</td><td>6</td><td>0 000</td><td>0.03</td><td>00</td><td></td><td></td><td></td><td></td><td></td></th<>	18			RSQ=	0.99967		1.000	0.999	0.999	0.999	0.999	0.999	0.999			0 000		10 000	20	000	30.00	0	40 000	6	0 000	0.03	00					
20 Bits Mark 1941(2) 11984.2 112766 12231.8 8027 11942 11944 11944 101 101	19				-,		.,			-,	-,					0,000		10,000	20,	,000	50,00		40,000		0,000	00,0	~					
212 11221 11942 1 11942 1 11942 1 11942 11944 11942	20	Blank 1%HNO3		11984.2	12766	12553	10634																									
22 is <t< td=""><td>21</td><td>BlankMQH2O</td><td></td><td>12331,5</td><td></td><td>12721</td><td>11942</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	21	BlankMQH2O		12331,5		12721	11942																									
No. CUMMTS (Mean) RSD 45Sc 720c 740c 102c 175Lu 193 P Xsc V/70 e NR NL Xsc V/7 V/20 e C1 m/m C2/ m/m C1 m/m C2/ m/m	22				5826																					vode	ni					
Image: constraint of the start of the					COUNTS																			V1 V	2 C1							
23 (Mean)					/CPS				RSD	45Sc	72Ge	74Ge	103Rh	159Tb	175Lu	193ir	X/Sc	X/72G	X/74G	X/Rh	Х/ТЬ	X/Lu	X/Ir	uk/ u	k/ (baz	d C2/	C2/	C2/	C2/	C2/	C2/	C2/
2 113.p 100534 100524 11277 170603 5.9 438.94 10059 13133 62101 912.4 69327 39691 0.2 1.1 0.8 0.2 0.1 0.01	22				(Mean)													е	е					ml n	1 1)	Sc	72Ge	74Ge	Rh	Tb	Lu	193lr
0 00-0 100-0 100-0 100-0 100-0 100-0 0.0 <td>2.5</td> <td>PL2 D</td> <td></td> <td></td> <td>10624</td> <td>10000</td> <td>44077</td> <td>10602</td> <td>5.0</td> <td>42904</td> <td>10050</td> <td>12102</td> <td>62404</td> <td>01254</td> <td>90227</td> <td>20604</td> <td>0.2</td> <td>4.4</td> <td>0.9</td> <td>0.2</td> <td>0.1</td> <td>0.1</td> <td>0.2</td> <td></td> <td>4 0.0</td> <td>2 0.0</td> <td>4 0.0</td> <td>2 0.0</td> <td>2 0.02</td> <td>0.02</td> <td>0.02</td> <td>0.02</td>	2.5	PL2 D			10624	10000	44077	10602	5.0	42904	10050	12102	62404	01254	90227	20604	0.2	4.4	0.9	0.2	0.1	0.1	0.2		4 0.0	2 0.0	4 0.0	2 0.0	2 0.02	0.02	0.02	0.02
Bit 2, Millico 12201 12301 12201 12101 12201 12201 12101	28	BL1 MOH2O			5826	5703	5753	5031	1.6	41760	10423	13815	61602	80007	88633	40236	0,2	0.6	0,0	0,2	0,1	0,1	0,5	1	1 0.1	1 0.1	2 01	3 -0,0	3 -0,03	-0,03	-0,03	-0,03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	29	BL2 MOH2O			12721	12837	12605	10701	0.0	42668	10723	13606	62272	00606	22023	30014	0.3	1.2	0.9	0.2	0,1	0,1	0.1	4	1 0.0	1 -0,1	1 0.0	1 0.0	0.04	0.01	0.01	0.01
1 Kall_tark 0852 61055 71085 99985 1.3 70899 1078 1986 6114 9308	30	BL3_MOH2O			110/2	11000	11000	11035	0.4	42671	10275	13478	62266	80033	88997	30703	0,3	1.2	0,0	0.2	0.1	0.1	0.3	1	1 .0.0	1 .0.0	1 .0.0	1 .0.0	1 .0.01	-0.01	0.01	-0.01
22 Kalstap_trav 52860 53612 51617 53633 2.2 7240 1140 1417 62370 94612 1222 0.7 0.8 0.6 0.6 1.5 1 1 0.68 0.77 0.77 0.75 0.68 0.68 0.6 1.5 1 1 0.68 0.77 0.77 0.75 0.68 0.68 0.6 1.5 1 1 0.68 0.67 0.77 0.77 0.75 0.68 0.68 0.6 1.5 1 1 0.68 0.67 0.77 0.77 0.75 0.68 0.68 0.71 1 0.68 0.68 0.77 0.77 0.75 0.68 0.68 0.77 0.77 0.75 0.68 0.68 0.77 0.77 0.75 0.68 0.68 0.77 0.77 0.75 0.68 0.68 0.77 0.77 0.75 0.68 0.68 0.71 0.75 0.68 0.78 0.77 0.75 0.75 0.74 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0	31	Kal 1 trav			60520	61055	11300	59985	13	70899	10799	13983	61142	93405	93083	40398	0,0	5.6	43	1.0	0.6	0.7	1.5	1	1 0.8	0 04	6 0.8	9 0.9	3 0.91	0.84	0.82	0.85
Sing_thr <t< td=""><td>32</td><td>Kaletan trav</td><td></td><td></td><td>52960</td><td>53612</td><td>51617</td><td>53653</td><td>22</td><td>72404</td><td>11140</td><td>14177</td><td>62370</td><td>94790</td><td>94612</td><td>41224</td><td>0.7</td><td>4.8</td><td>3.7</td><td>0.8</td><td>0,6</td><td>0.6</td><td>13</td><td>1</td><td>1 0.6</td><td>8 03</td><td>6 07</td><td>2 0.7</td><td>7 0 75</td><td>0.69</td><td>0.68</td><td>0.70</td></t<>	32	Kaletan trav			52960	53612	51617	53653	22	72404	11140	14177	62370	94790	94612	41224	0.7	4.8	3.7	0.8	0,6	0.6	13	1	1 0.6	8 03	6 07	2 0.7	7 0 75	0.69	0.68	0.70
44 Kor_stap_trav 75125 72585 72285 74236 1,72816 11252 14580 63050 96092 9413 41857 1,0 6,7 5,2 1,2 0,0 1,1 1,1 1,0 1,0 1,1 <td>33</td> <td>Kor 1 trav</td> <td></td> <td></td> <td>81690</td> <td>81249</td> <td>87434</td> <td>76387</td> <td>6.8</td> <td>72133</td> <td>11330</td> <td>14475</td> <td>63507</td> <td>96557</td> <td>95201</td> <td>41995</td> <td>1.1</td> <td>7.2</td> <td>5.6</td> <td>13</td> <td>0.8</td> <td>0,0</td> <td>1,0</td> <td>1</td> <td>1 11</td> <td>6 0.6</td> <td>8 12</td> <td>1 12</td> <td>1 25</td> <td>1 16</td> <td>1 16</td> <td>1 17</td>	33	Kor 1 trav			81690	81249	87434	76387	6.8	72133	11330	14475	63507	96557	95201	41995	1.1	7.2	5.6	13	0.8	0,0	1,0	1	1 11	6 0.6	8 12	1 12	1 25	1 16	1 16	1 17
35 Rig_trav 252244 255244 249467 251766 1,2 73641 11543 14797 6333 96043 95136 4205 3,4 21,9 17,0 4,0 2,6 2,7 6,0 1 4,04 2,53 4,17 4,38 4,36 4,00 4,06 4,35 36 Rig_trav 255044 233285 252370 259688 1,6 74151 11546 1466 6377 11825 3,4 22,1 17,4 4,0 2,6 2,7 6,1 1 4,04 2,53 4,17 4,38 4,36 4,00 4,06 4,13 3,4 22,1 17,4 4,0 2,6 2,7 6,1 1 4,04 2,53 4,17 4,38 4,36 4,00 4,06 4,38 4,06 4,48 4,06 4,18 4,06 4,18 4,06 4,18 4,06 4,18 4,07 4,04 2,53 4,17 4,38 4,06 4,06 4,06 4,06 4,06 4,06 4,06 4,06 4,06 4,06 4,06	34	Kor stap trav			75125	78557	72583	74236	4 1	72816	11259	14580	63508	96092	94513	41857	1.0	67	5.2	1,0	0.8	0,8	1.8	1	1 1.0	5 0.6	0 1.1	0 1.1	5 1.13	1.05	1.05	1.06
66 RIL_stap_trav 255094 255094 253285 229310 259688 1.6 7 4015 11548 14866 63716 96800 95917 14885 3.4 22.1 17.4 4.0 2.5 4.1 4.4 4.3 4.4 <	35	Rii 1 trav			252244	255504	249461	251766	12	73641	11543	14797	63313	96043	95136	42051	3.4	21.9	17.0	4.0	2.6	2.7	6.0	1	1 40	1 2.5	3 4.1	7 4 3	4 35	4.07	4.04	4.06
37 Pro_tirav 182613 179489 164966 183383 1.5 71097 11641 1503 64760 9752 96577 41832 2.6 1.5 712,1 2.8 1.9 1.9 1.4 1 1 2.84 2.85 1.1 1.1	36	Rij stan trav			255094	253285	252310	259688	1.6	74015	11548	14666	63716	96800	95917	41885	3.4	22.1	17.4	4.0	2.6	27	61	1	1 4.0	5 2.5	5 4.2	1 4.4	4.38	4.09	4.05	4.13
38 Pro_stap_trav 104492 102081 1068002 3,3 71873 1164 15154 66226 98400 98009 42822 1.5 9,0 1,1 1,1 1,2 1 1 1,2 1 1 1,2 1 1 1,2 1 1 1,4 1,57 1,63 1,59 1,51 1,5 9,0 1 1 1,51 1 1 1,51 1 1 1,51 1 1 1,51 1 1 1,51 1 1 1,51 1 1 1,51 1 1 1,51 1 1 1,51 1 1 1,51 1 1 1,51 1 1 1,51 1 1 1,51 1 1 1,51 1 1 1,51 1 1,51 1,51 1,50 1,51 1,50 1,51 1,50 1,51 1,50 1,51 1,50 1,51 1,50 1,51 1,50 1,51 1,50 1,51 1,50 1,51 1,50 1,51 1,50 1,51 1,5	37	Pro 1 trav			182613	179489	184966	183383	1.5	71097	11641	15038	64760	97532	96577	41832	2.6	15.7	12.1	2.8	1,9	1.9	4.4	1	1 2.8	4 1.8	4 2.9	2 3.0	5 3,01	2.84	2.82	2.90
39 Mat_stap_trav 439508 444929 434946 438648 1,1 87621 11796 15325 64991 97586 97138 42551 5,0 37,3 28,7 6,8 4,5 4,5 10,3 1 7,13 3,81 7,27 7,56 7,55 7,14 7,05 7,15 10 Mat_stap_trav 376278 382190 3720278 343733 337342 2,5 7454 1003 4,5 28,2 22,3 5,2 3,4 3,5 7,9 1 6,08 3,21 6,41 6,71 6,47 6,56 5,65 5,71 5,41 4,50 6,56 5,65 5,71 5,41 6,56 5,65 5,78 3,9 9,0 1 1 6,08 3,21 6,41 6,71 6,44 6,71 6,47 6,13 6,50 5,62 5,61 6,46 6,46 6,60 660 96607 96204 4,83 30,2 23,8 5,4 3,6 3,7 8,4 1 1 0,57 1,60 1,1 1,03 0,97	38	Pro stap trav			104492	102081	106902		3.3	71873	11644	15154	66226	98400	98009	42622	1,5	9,0	6,9	1,6	1,1	1,1	2,5	1	1 1.5	4 0.9	4 1.5	7 1.6	3 1,59	1.51	1,49	1.53
40 Mat_stap_trav 376278 382190 372558 374085 1,4 8020 11416 14725 64574 96903 96342 41830 4,3 33,0 25,6 5,8 3,9 3,9 9,0 1 1 6,08 3,21 6,41 6,71 6,47 6,13 6,06 6,20 11 Pitt_1trav 336152 327380 343733 337342 2,5 74554 11903 15099 65071 97508 96771 42639 4,5 28,2 22,3 5,2 3,4 3,5 7,9 1 1 5,68 3,62 5,85 5,74 5,41 5,76 5,78 3,78 4 1 5,68 3,62 5,85 5,74 5,74 5,77 1,08 1,11 1,03 1,03 0,97 1,17 1 1,088 0,53 0,99 1,03 1,03 0,97 0,11 1,01 0,41 1,03 0,61 4,7 1,1 0,7 0,7 1,7 1 1,086 0,51 1,00 0,11 1,01 0,10	39	Mat 1 trav			439508	444929	434946	438648	1,1	87621	11796	15325	64991	97586	97138	42551	5,0	37,3	28,7	6,8	4.5	4,5	10,3	1	1 7.1	3 3.8	1 7.2	7 7.5	6 7,55	7,14	7,05	7,15
11 Pit_1_trav 336152 327380 343733 337342 2,5 74554 11903 15099 65071 97508 9771 42639 4,5 26,2 22,3 5,2 3,4 3,5 7,9 1 1 5,41 3,40 5,45 5,81 5,71 5,41 5,36 5,71 5,41 5,36 5,71 5,41 5,36 5,71 5,41 1,03 5,68 5,65 6,24 6,04 5,68 5,65 5,78 13 Koz_1_trav 70838 70107 74553 0,9 71572 1,5 74404 11556 64698 97044 96799 4213 1,0 6,1 4,7 1,1 0,98 0,53 0,99 1,03 0,97 0,98 0,39 1,03 0,97 0,98 0,38 1,11 1,05 0,97 1,06 1,4 7 1,1 1,00 0,7 1,7 1 1,095 0,97 1,01 1,03 0,97 1,01 1,03 0,97 1,01 1,03 1,31 3,30 1,11 1,05	40	Mat_stap_trav			376278	382190	372558	374085	1,4	88020	11416	14725	64574	96903	96342	41830	4,3	33,0	25,6	5,8	3,9	3,9	9,0	1	1 6.0	8 3,2	1 6,4	1 6,7	1 6,47	6,13	6,06	6,20
42 Plit_stap_trav 352371 359434 346848 350829 1,8 73801 11675 14778 64660 97660 96527 41892 4,8 30,2 23,8 5,4 3,6 3,7 8,4 1 1 5,68 3,62 5,85 6,24 6,04 5,68 5,66 5,78 13 Koz_1_trav 70838 70103 71572 1,5 74404 11556 15065 64698 97044 96799 42123 1,0 6,1 4,7 1,1 0,7 0,7 1,7 1 1 0,98 0,53 0,99 1,03 1,03 0,97 0,98 0,98 14312527 1573630 12438274 14764676 11,8 57481 11573 14953 64179 95959 95244 41332 249,0 1236,7 957,2 223,0 149,2 150,3 346,3 1 1 205,8 206,0 204,2 240,0 243,0 243,0 243,0 220,8 120,8 131,3 288,8 200,6 241,4 232,1 20,8 <td>41</td> <td>Plit 1 trav</td> <td></td> <td></td> <td>336152</td> <td>327380</td> <td>343733</td> <td>337342</td> <td>2,5</td> <td>74554</td> <td>11903</td> <td>15099</td> <td>65071</td> <td>97508</td> <td>96771</td> <td>42639</td> <td>4,5</td> <td>28,2</td> <td>22,3</td> <td>5,2</td> <td>3,4</td> <td>3,5</td> <td>7,9</td> <td>1</td> <td>1 5,4</td> <td>1 3,4</td> <td>0 5,4</td> <td>5 5,8</td> <td>1 5,71</td> <td>5,41</td> <td>5,36</td> <td>5,41</td>	41	Plit 1 trav			336152	327380	343733	337342	2,5	74554	11903	15099	65071	97508	96771	42639	4,5	28,2	22,3	5,2	3,4	3,5	7,9	1	1 5,4	1 3,4	0 5,4	5 5,8	1 5,71	5,41	5,36	5,41
13 Koz_1_trav 70838 70103 71572 1,5 74404 11556 15065 64698 97044 96799 42123 1,0 6,1 4,7 1,1 0,7 0,7 1,7 1 1 0,98 0,53 0,99 1,03 1,03 0,97 0,95 0,98 14 Koz_stap_trav 74946 74315 75670 74853 0,9 75205 11651 15027 64980 96787 96240 42191 1,0 6,4 5,0 1,2 0,8 0,8 1,8 1 1 1,05 0,57 1,06 1,11 1,04 1,03 1,05	42	Plit_stap_trav			352371	359434	346848	350829	1,8	73801	11675	14778	64660	97660	96527	41892	4,8	30,2	23,8	5,4	3,6	3,7	8,4	1	1 5,6	8 3,6	2 5,8	5 6,2	4 6,04	5,68	5,65	5,78
44 Koz_stap_trav 74946 74315 75670 74853 0.9 75205 11651 15027 64980 96787 96240 42191 1.0 6.4 5.0 1.2 0.8 0.8 1.8 1 1 1.05 0.57 1.06 1.11 1.10 1.04 1.03 1.05 45 sum_a_1_trav 14312527 14754636 12438274 14764676 11.8 57481 11573 14953 64179 95959 95244 41332 249.0 12037 346.3 1 1 208.8 200.6 249.2 200.4 243.2 247.0 46 sum_a_1_trav 12317054 12205068 1243253 11631 14639 63684 94496 93827 41208 20.8 105.0 370.7 381.8 86.1 1 1 205.6 241.9 213.7 241.9 213.4 222.2 212.9 210.8 413.2 213.4 228.6 213.4 228.6 213.4 213.4 228.6 213.4 213.4 213.4 213.4 213.4	43	Koz_1_trav			70838	70103		71572	1,5	74404	11556	15065	64698	97044	96799	42123	1,0	6,1	4,7	1,1	0,7	0,7	1,7	1	1 0,9	8 0,5	3 0,9	9 1,0	3 1,03	0,97	0,95	0,98
15 sum_a_1_trav 14312527 15734630 12438274 14764676 11.8 57481 11573 14953 64179 9559 9524 41332 249,0 1236,7 957,2 223,0 149,2 150,3 346,3 1 1 238,8 200,6 249,2 260,4 256,2 243,6 241,3 247,0 16 sum_a_2_trav 1217054 12210564 1224533 116051 14302 63864 94496 93827 41208 220,8 150,3 346,3 1 1 238,8 200,6 249,2 260,4 256,2 243,6 241,3 241,2 243,4 228,8 1 1 205,5 17,8 213,4 228,9 1 1 205,5 17,8 213,4 228,9 1 1 205,5 17,8 213,4 228,9 1 1 205,5 17,8 213,4 228,9 1 1 243,6 241,3 243,7 1 243,6 241,3 243,7 1 1 205,5 17,8 1 1 1 1 1	44	Koz_stap_trav			74946	74315	75670	74853	0,9	75205	11651	15027	64980	96787	96240	42191	1,0	6,4	5,0	1,2	0,8	0,8	1,8	1	1 1,0	5 0,5	7 1,0	6 1,1	1 1,10	1,04	1,03	1,05
46 sum_a_2_trav 12317054 12900168 12245333 11805647 4,5 55791 11631 14639 63684 94496 93827 41208 220,8 105,0 811,4 193,4 130,3 131,3 298,9 1 1 205,5 177,8 213,4 228,9 222,2 212,9 210,8 213,2 47 sum_b_1trav 35084988 35899016 32001822 37294120 7,8 62175 12235 14544 62618 94584 91853 40605 564,0 2866,1 2410,9 560,0 370,7 381,8 863,6 1 1 585,4 454,6 577,8 656,2 643,7 606,9 615,3 616,3 49 ummy (196HNO3) 27705 2919750 28148236 3096046 4,8 59540 11650 14344 62111 94894 91701 40679 943,3 252,6 204,6 473,9 310,2 321,0 723,5 1 1491,3 398,4 609,3 565,9 541,7 506,9 545,7 200,6 50,6 50,7	45	sum_a_1_trav			14312527	15734630	12438274	14764676	11,8	57481	11573	14953	64179	95959	95244	41332	249,0	1236,7	957,2	223,0	149,2	150,3	346,3	1	1 238	8 200	6 249,	2 260,	4 256,2	243,6	241,3	247,0
47 sum_b_1_trav 35084988 35899016 32001822 37294120 7,8 62175 12235 14544 62618 94584 91853 40605 564,0 2866,1 2410,9 560,0 370,7 381,8 883,6 1 1 585,4 454,6 577,8 656,2 643,7 606,9 613,4 616,3 18 sum_b_2 trav 29433147 29190760 28148236 30900446 4,8 59540 11650 14384 62111 94894 91701 40679 494,3 2526,6 2046,2 473,9 310,2 321,0 723,5 1 1 491,3 398,4 509,3 556,9 544,7 506,9 515,7 506,9 516,4 506,9 516,4 50,4 50,4 516,4 50,4	46	sum_a_2_trav			12317054	12900168	12245353	11805641	4,5	55791	11631	14639	63684	94496	93827	41208	220,8	1059,0	841,4	193,4	130,3	131,3	298,9	1	1 205	5 177	8 213,	4 228,	222,2	212,9	210,8	213,2
18 sum_b_2_trav 29433147 29190760 28148236 30960446 4,8 59540 11650 14384 62111 94894 91701 40679 494,3 2526,6 2046,2 473,9 310,2 321,0 723,5 1 1 491,3 398,4 509,3 556,9 544,7 506,9 515,7 516,4 19 0ummy (15kHNO3) 27705 27298 28873 26944 3,7 4843 651 83 33 12 22 39 5,7 42,5 332,4 8311 22667 712,4 1 1 0,3 4,4 8,3 90,3 955,5 3705,7 2003,8 506,9 516,7 516,4 506,9 516,7 516,4 506,9 516,7 516,4 506,9 516,7 516,4 506,9 516,7 516,4 506,9 516,7 516,4 506,9 516,7 516,4 506,9 516,7 516,4 506,9 516,7 516,4 506,9 516,7 516,4 506,9 516,7 516,4 506,9 516,7 516,4 50	47	sum_b_1_trav			35064986	35899016	32001822	37294120	7,8	62175	12235	14544	62618	94584	91853	40605	564,0	2866,1	2410,9	560,0	370,7	381,8	863,6	1	1 585	4 454	6 577,	8 656,	2 643,7	605,9	613,4	616,3
19 Dummy (19(HN03) 27705 27298 28873 26944 3,7 4843 651 83 33 12 22 39 5,7 42,5 332,4 831,1 2266,7 712,4 1 1 0,3 4,4 6,3 90,3 956,5 3705,7 2003,8 508,4 50 SLRS-5 J 49,5 (44.5-54.5) 2909327 2894185 2927770 2906028 0,6 ##### 11434 14954 64609 96729 95004 41186 27,7 254,5 194,6 45,0 30,1 30,6 70,6 1 48,38 22,09 51,08 52,73 154,56 48,95 49,00 50,21 51 Nist J 141,8 1332.4 64104 143,72 1246,7 1 48,38 22,09 51,08 52,73 143,26 143,26 143,26 143,26 143,27 144,8 144,8 144,8 144,8 144,8 144,8 144,8 144,8 144,8 144,8 144,8 144,8 144,8 144,8 144,8 144,8 144,8 <td< td=""><td>48</td><td>sum b 2 trav</td><td></td><td></td><td>29433147</td><td>29190760</td><td>28148236</td><td>30960446</td><td>4,8</td><td>59540</td><td>11650</td><td>14384</td><td>62111</td><td>94894</td><td>91701</td><td>40679</td><td>494,3</td><td>2526,6</td><td>2046,2</td><td>473,9</td><td>310,2</td><td>321,0</td><td>723,5</td><td>1</td><td>1 491</td><td>3 398</td><td>4 509.</td><td>3 556.</td><td>544.7</td><td>506,9</td><td>515,7</td><td>516,4</td></td<>	48	sum b 2 trav			29433147	29190760	28148236	30960446	4,8	59540	11650	14384	62111	94894	91701	40679	494,3	2526,6	2046,2	473,9	310,2	321,0	723,5	1	1 491	3 398	4 509.	3 556.	544.7	506,9	515,7	516,4
50 SLRS-5_I 49,5 (44.5-54.5) 2909327 2894185 2927770 2906028 0.6 ##### 11434 14954 64609 96729 95004 41186 27,7 254,5 194,6 45,0 30,1 30,6 70,6 1 1 48,38 22,09 51,08 52,73 51,55 48,95 49,00 50,21 1 Nist_I 141,8 (133.2-150.4) 843130 840113 845207 844070 0.3 46492 10858 14590 65091 94749 93287 41303 18,1 77,7 57,8 13,0 8,9 9,0 20,4 0,4 4 138,74 143,91 154,20 154,88 146,67 143,25 143,06 143,54 2 9600,64 10,074 10,077 196,189 196,77 196,189 147,93 156,54 651,73 145,64 651,73 143,06 143,54 2 960,076 10,074 10,077 196,189 188,70 190,473 21 576,74 110,08 651,73 143,06 143,06 <td>49</td> <td>Dummy (1%HNO3)</td> <td></td> <td></td> <td>27705</td> <td>27298</td> <td>28873</td> <td>26944</td> <td>3,7</td> <td>4843</td> <td>651</td> <td>83</td> <td>33</td> <td>12</td> <td>22</td> <td>39</td> <td>5,7</td> <td>42,5</td> <td>332,4</td> <td>831,1</td> <td>2266,7</td> <td>1246,7</td> <td>712,4</td> <td>1</td> <td>1 0</td> <td>3 4</td> <td>4 8.</td> <td>3 90,</td> <td>3 955,5</td> <td>3705,7</td> <td>2003,8</td> <td>508,4</td>	49	Dummy (1%HNO3)			27705	27298	28873	26944	3,7	4843	651	83	33	12	22	39	5,7	42,5	332,4	831,1	2266,7	1246,7	712,4	1	1 0	3 4	4 8.	3 90,	3 955,5	3705,7	2003,8	508,4
1 141,8 (133,2-150,4) 843130 840113 845207 844070 0,3 46492 10858 14590 65091 94749 93287 41303 18,1 77,7 57,8 13,0 8,9 9,0 20,4 4 138,74 143,91 154,20 154,88 146,67 143,25 143,06 143,54 52 secondorm urin 100 (91 406) 191877 196189 18970 190473 2.1 57674 11708 15054 65173 97585 96026 42088 3.3 16.4 12.7 2.9 2.0 2.0 4.6 0.1 4 400 76 130,06 143,54 52 secondorm urin 101877 196189 18870 12073 2.5 157674 11708 15054 65173 97585 96026 42088 3.3 16.4 12.7 2.9 2.0 2.0 4.6 0.1 4.4076 140,96 140,96 140,96 140,96 140,96 140,96 </td <td>50</td> <td>SLRS-5_I</td> <td>49,5</td> <td>(44.5-54.5)</td> <td>2909327</td> <td>2894185</td> <td>2927770</td> <td>2906028</td> <td>0,6</td> <td>#####</td> <td>11434</td> <td>14954</td> <td>64609</td> <td>96729</td> <td>95004</td> <td>41186</td> <td>27,7</td> <td>254,5</td> <td>194,6</td> <td>45,0</td> <td>30,1</td> <td>30,6</td> <td>70,6</td> <td>1</td> <td>1 48,3</td> <td>8 22,0</td> <td>9 51,0</td> <td>8 52,7</td> <td>3 51,55</td> <td>48,95</td> <td>49,00</td> <td>50,21</td>	50	SLRS-5_I	49,5	(44.5-54.5)	2909327	2894185	2927770	2906028	0,6	#####	11434	14954	64609	96729	95004	41186	27,7	254,5	194,6	45,0	30,1	30,6	70,6	1	1 48,3	8 22,0	9 51,0	8 52,7	3 51,55	48,95	49,00	50,21
52 eeronorm urin 100 (91 106) 191677 196189 188370 190473 21 57674 11708 15054 65173 97585 96028 33 164 127 29 20 20 20 46 0.1 4 149 75 132 35 163 00 160 96 167 74 149 40 149 30 164 63 2 4 Mg He 24 Mg He 27 Al no gas 39 K He 43 Ca He 52 Cr H2 54 Fe H2 55 Mn He 56 Fe He 59 Co He 60 Ni He 63 Cu He 66 Zn He 75 As He 78 (+)	51	Nist_I	141,8	(133.2-150.4)	843130	840113	845207	844070	0,3	46492	10858	14590	65091	94749	93287	41303	18,1	77,7	57,8	13,0	8,9	9,0	20,4	0,4	4 138,7	4 143,9	1 154,2	0 154,8	3 146,67	143,25	143,06	143,54
7 Li no gas 23 Na He 24 Mg He 27 Al no gas 39 K He 43 Ca He 52 Cr H2 54 Fe H2 55 Mn He 56 Fe He 59 Co He 60 Ni He 63 Cu He 66 Zn He 75 As He 78 (+) :	52	eeronorm urin	100	/01 106)	101677	106180	188370	100/73	21	57674	11708	15054	65173	07525	06026	42088	33	16.4	12.7	20	2.0	2.0	4.6	01	1 1/0 7	A 122 1	F 153.0	0 160 0	457 74	140 40	140 30	151 53
		< ▶ 7	7 Li no	gas 23 N	a He	24 Mg He	e 27 A	l no gas	39	K He	43 0	Ca He	52	Cr H2	54 F	e H2	55 N	In He	56 F	e He	59 C	o He	60 N	li He	63 Cu	I He	66 Zn	He	75 As H	le 7	8 (+ :

What we have done so far:

• Concentrations of THg in water samples (January, April and June of 2021)

To be achieved:

1st Project period:

- Analysis of THg in water samples (field trip in October 2021)
- Analysis of THg in sediments (will be finished by the end of the 1st Project period) → samples are already digested

2nd Project period

 Digestion and analysis of THg in biological material (fish muscle, intestine and acanthocephalans)

My wishes that are not included in the project tasks:

? Development of the quick method for the analysis of MeHg in biological samples (at least in muscle tissue) with AMA 254

? Application of this method for the analysis of MeHg content in biological samples

Zorana Kljaković-Gašpić, KICK-OFF MEETING IP-2020-02; Zagreb, 11th October 2021