Determination of biochemical biomarkers in biota – useful ecotoxicological tools of environmental contamination

WATER POLLUTION

Zuzana Redžović

Ruđer Bošković Institute zuzana.redzovic@irb.hr

KICK-OFF MEETING Integrated evaluation of aquatic organism responses to metal exposure: gene expression, bioavailability, toxicity and biomarker responses (BIOTOXMET)

Zagreb, 11th October 2021

INTRODUCTION

Biological relevance of biomarkers

INTRODUCTION

Multibiomarker approach

BIOMARKERS – changes in cellular structures or functions that reflect an interaction between a biological system and a potential chemical, biological or physical harmful factor

MULTIBIOMARKER APPROACH – necessary in environments exposed to different groups of pollutants –> to assess the biological responses of the organisms that inhabit them

proteins metallothioneins

biomarkers of oxidative stress

biomarkers of xenobiotic exposure

O, biomarkers of anaerobic metabolism

MEASUREMENTS

Biomarkers in the fish intestine

• most commonly used bioindicator tissues in biomonitoring studies are liver, gills and muscle (Filipović Marijić and Raspor 2006, Barišić et al. 2015)

 the intestine is less used → the data on biochemical biomarkers are rare → rare data on biomarker responses to changes in environmental conditions and exposure to pollutants

BIOTOXMET PROJECT WILL INVOLVE:

METALLOTHIONEINS

- a specific biomarker for heavy metal contamination
- soluble, thermostable low molecular weight proteins (6-7 kDa)
- high affinity for heavy metal cations (Cd, Cu, Hg, Zn, etc.)
- rich -SH group to which they bind metals or free radicals
- present in the normal homeostasis of essential metals

- increased metal conc. → MT induction
- regulate the concentration of free metal cations in the cell and / or free radicals and thus protect cell structures from their toxic effect

METALLOTHIONEINS

- ethanol precipitation
 spectrophotometric determination of the content of free -SH groups
- differential fractional protein precipitation occurs

 MT concentrations will be determined at 412 nm wavelength and expressed in µg MT per mg protein

Viarengo et al., 1997

Cornell University, USA, 2014

Metabolic enzymes

1. Catalase (CAT)	• ROS detoxification Claiborne (1985)
2. Total glutathione	• antioxidant enzyme
(GSH)	Tietze (1969); Rahman et al. (2006)
3. Lactate dehydrogenase (LDH)	 anaerobic metabolism, functional and environmental anaerobiosis Bergmeyer and Bernt (1974)
4. Superoxide	 antioxidant enzyme, anthropogenic
dismutase (SOD)	pollution Marklund and Marklund (1974)
5. Glutathione	• antioxidant enzyme
reductase (GR)	Mavis and Stellwagen (1968)
6. Glutathione S-	• marker of detoxification processes
transferase (GST)	Habig et al. (1974)
7. Glutathione	• ROS detoxification
peroxidase (GPx)	Flohe et al. (1973)

Lactate dehydrogenase (LDH)

- catalyzes the reversible conversion of pyruvate to lactate
- the conversion occurs when O2 is absent or very low
- a key enzyme in the anaerobic metabolic processes
- increased LDH activity \rightarrow increased anaerobic capacity

Superoxide dismutase (SOD)

Glutathione reductase (GR)

- antioxidant enzyme
- potential biomarkers for synergistic intoxication of pesticides in fish

Glutathione Disulfide (GSSH)

Glutathione (GSH)

oxidative stress causes an increase in GR activity

Glutathione S-transferase (GST)

marker of detoxification processes

Glutathione-S-Conjugate

- catalyzes the conjugation of reduced glutathione (GSH) to xenobiotic substrates
- indicates potential organic contamination
- an increase in GST activity indicates stimulation of detoxification processes

Laboratory procedure

Spectrophoto metric measurement

Centrifugation

Microplate method

Metabolic enzymes

- spectrophotometric methods
- measurements at a certain wavelength (340 and 420 nm)
- enzyme activity is calculated from the slope (Vmax = miliUnits / min) of the curve

