Inhibitory Zinc Ion Binding Site and The Metal Exchange Mechanism in Human DPP III

Sanja Tomić, Antonija Tomić, Hrvoje Brkić and Antonia Matić

The work has been supported by Croatian Science Foundation project IP-2018-01-2936

DPP III or M49 enzyme family

Zn dependent metalo enzymes of Molecular mass ~61-97 (103) kDa

widely spread 5 kingdoms: Eubacteria, Protista, Fungi, Plantae, Animalia

Zinc-exopeptidase hydrolyzes dipeptides from the N-terminal of its substrates, peptides with three AA and more

$$R \xrightarrow{O}_{H} R' + H_{2}O \longrightarrow R \xrightarrow{O}_{OH} H \xrightarrow{H}_{H} N \xrightarrow{R'}$$

Human DPP III

2008. \rightarrow yeast DPP III (PBD id 2CSK)

2009. \rightarrow human DPP III (PBD id 3FVY)

2012. \rightarrow **E451A mutant** of human DPP III with tynorphin (PBD id 3T6B)

Conserved motifs:

HEXXGH and EEXR(K)AE(D) coordinate Zn ion

Ehperiments: excess zinc inhibits hDPP III hydrolytic activity

Zn ion added as $Zn(Ac)_2$ to the reaction mixture of pH 8.0, inhibited rat DPP III already at a 1µM level (IC₅₀ = 1.8µM), while 10µM Zn(Ac)₂ completely abolished its activity.

Thermolysin, PDB_id **1Ind (TML)**

Excess zinc also inhibits other exo- and endometallopeptidases. One example is thermolysin where the inhibitory effect is explained by the binding of a second zinc ion to the catalytically important H231 within 3.2 Å of the zinc bound to native thermolysin.

Identifikacation of the inhibitory Zn binding site hDPP III

hDPP III – TML 3D structures - aligment

hDPP III – TML hDPP III -sequences - aligment

QMMM calculations (S1, S2, S3)

S1 / S2 / S3 initial and QMMM optimized

	d/Å						
	I	S1	S2	I	S3		
ZnA-ZnI	3.45	3.78	4.31	5.05	4.95		
ZnA-H450(ne2)	2.34	2.11	2.14	2.29	2.19		
ZnA-H455(ne2)	2.45	2.10	2.21	2.39	2.16		
ZnA-E508(oe2)	2.18	2.03	2.06	2.05	2.14		
Znl-E508(oe1)	2.17	2.16	3.98	2.06	2.09		
Znl-H568(ne2)	2.35	2.20	2.18	9.59	9.57		
Znl-Y318(oh)	Inl-Y318(oh) 2.53/4.19		2.22 4.79		9.98		
Znl-E316(oe2)	3.89 /2.75	4.03	2.10	2.07	2.11		

S1 / S2 / S3 QMMM optimized

QMMM calculations (CPLX1 / CPLX2)

Zn nonbonding parameters models

Model	#	charge/e						
woder		Zn						
Dummy		Total	central point (carry vdw parameters)	δ points at z- axis of octahedron	points at x and y axises of octahedron			
atom	D1 ¹	2	-1	0.5	0.5			
	D2	1.325	-0.475	0.1	0.4	-0.65		
	1 ²		2.0 1.375 -(
6-12	2							
	3	ZnA 1.1, ZnI 0.9						
	3'	1.0						
	3r	ZnA 0.9, ZnI 1.1						

$${}^{N}) = \sum_{veze} \frac{k_{l}}{2} (l_{i} - l_{i,0})^{2} + \sum_{kutovi} \frac{k_{\theta}}{2} (\theta_{i} - \theta_{i,0})^{2} + \sum_{torzije} \frac{V_{n}}{2} (1 + \cos(n\omega - \gamma))$$

$$+\sum_{i}^{N}\sum_{j}^{N}\left(4\varepsilon_{ij}\left[\left(\frac{\sigma_{ij}}{r_{ij}}\right)^{12}-\left(\frac{\sigma_{ij}}{r_{ij}}\right)^{6}\right]+\frac{q_{i}q_{j}}{4\pi \alpha_{ij}}\right)$$

Lorentz-Berthelot rules

$$\sigma_{ab}^{\text{LB}} = \frac{\sigma_{aa} + \sigma_{bb}}{2} \,. \qquad \epsilon_{ab}^{\text{LB}} = \sqrt{\epsilon_{aa} \epsilon_{bb}} \,.$$

Dummy atom Zn parameter models

	SYSTEM Force field	t _i /t _{total} (μs)	<zna–zni> (Å)</zna–zni>	ZnA ligands		MMGBSA(kcal/mol)			
Model #					Znl ligands	Receptor: DPP III Ligand: ZnA + ZnI	Receptor: DPP III Ligand: ZnA	Rec: DPP III+ ZnA Ligand: ZnI	
D1	S1 ff14SB	0.099/0.1 ^{ZnA} 0.095/0.1 ^{ZnI}	<zn<sub>A–Zn_I> (Å)</zn<sub>	H450, H455, E508^M, E451 ^M 2 W	H568, E316 ^B , E508 ^M , Y315 2W	-292±11	-164±6	-108±7	
	S1 ff03	0.1/0.1	5.4±0.1 51% 5.1±0.1 49%	H450, H455, E508 ^M , E451 ^M 2W	E316 ^M , E508^M, H568 3W	-320±8	-187±6	-121±6	
	S1 ff03	0.085/0.1 ^{ZnA} /0.1/0.1 ^{ZnI}	3.5±0.2	E508^M, H450, H455 mostly 3W	E316 ^M , E508^M mostly 3W	-144±6	-80±5	-47±7	
	S1 ff03	0.066/0.1 ^{ZnA} 0.056/0.1 ^{ZnI}	4.9±0.5	E508^M, H450, H455 3W	E316 ^M , E508^M, H568 3W	-166±8	-81±5	-50±10	
	S1 ff14SB	0.58/1 ^{ZnA} 0.88/1 ^{ZnI}	5.4±0.3	H450, H455, E508 ^M 3-4W	E316 ^M , E508^M mostly 4 W	-122±8	-67±5	-48±7	
D2	S2 ff14SB	0.5/1 ^{ZnA} 0.99/1 ^{ZnI}	4.7±0.5	H450, H455, E508^M 3-4W	E316^M, E508^M 4-5₩	-116±7	-68±5	-43±5	
	S1 ff14SB	0.062/0.1 ^{ZnA} 0.1/0.1 ^{ZnI}	4.1±0.3	H450, H455, E508 ^M 3W	E508 ^M 4-5 W	-102±9	-69±4	-23±6	
	S1 ff14SB	0.58/0.25 ^{ZnA} 0.88/0.25 ^{ZnI}	4,7±0.1	H450, H455, E508^M, E451 ^M 1W	H568, E508^M, V730 2-3W	-160±7	-96±5	-57±5	
	CPLX1 ff14SB	0.5/0.5 ^{znA} 0.5/0.5 ^{znI}	5.2±0.3	H450, H455, E508^{м,в}, E451 mostly 1 W	E508^M mostly 4 W	-114±7	-93±5	-18±4	
	CPLX2 ff14SB	0.5/0.5 ^{znA} 0.44/0.5 ^{znI}	5.4±0.3	H450, H455, E508 ^{м,в} 1W	H568, E508 ^{M,B} ^c HM-O2 nd mostly 2 W	-150±8	-85±5	-39±4	

D2 model

D2 model

D2 model, structures of S2 and CPLX2 obtained after 1µs and 500 ns, respectively, of MD simulations

12-6 ZN parameters models

	SIMULATED	_				MMGBSA(kcal/mol) ^b			
Model #	SYSTEM Force field	t _i /t _{total} a (μs/μs)	< ZnA –ZnI> (Å)	ZnA ligands	ZnI ligands (coordinated with)	Rec: DPP III Ligand: Zn _A + Zn _I	Receptor: DPP III + ZnA Ligand: Zn _I	Rec: DPP III Ligand: ZnA	
	S2 ff03	0.85/1	4.0 <u>+</u> 0.4	H450, H455, E508 ^M , E451 ^M W 1-4	Е508 ^в , Е316 ^в W 1-4	-31 <u>±</u> 4	-2 <u>±</u> 2	-27 <u>±</u> 3	
2	S1 ff03	0.99/1 ^{ZnA} 0.81/1 ^{ZnI}	3.8 <u>+</u> 0.2	H450, H455, E508^M, E451 ^M mostly 2 W	E508^M , E316 ^B mostly 3 W	-32 <u>+</u> 4	1 <u>+</u> 3	-26 <u>+</u> 3	
	S1- OH ⁻ ff03	0.25/0.35 ^{ZnA} 0.21/0.35 ^{ZnI}	3.5 <u>+</u> 0.3	H450, H455, E508 ^M , E451 ^M , OH ⁻	E316 ^B E508 ^B , OH ⁻ mostly 3 W	-24 <u>+</u> 6	13 <u>+</u> 5	-27 <u>+</u> 4	
3	S1- OH⁻ ff03	0.40/0.44 ^{ZnA} 0.17/0.44 ^{ZnI}	7.0 <u>+</u> 3.2	H450, H455, E508^{B,M}, OH ⁻ 0-1 W	E316 ^{B,M} , 2-3 W	-52 <u>+</u> 5	-4 <u>+</u> 3	-43 <u>+</u> 3	
	S1- OH ⁻ ff14SB	0.69/0.7 ^{ZnA} 0.55/0.7 ^{ZnI}	3.5 <u>+</u> 0.2 (last 590 ns)	H450, H455, E508 ^M , OH⁻ 1-2 W	E451 ^{M,B} , OH ⁻ 2-3 W	-49 <u>+</u> 4	-11 <u>+</u> 4	-35 <u>+</u> 3	
	S1- OH ^{- exc} ff14SB	0.5/1.0 ^{znA} 0.87/1.0 ^{znI}	10.0 <u>+</u> 0.7 (last 740 ns)	N294, E316 ^M mostly 2-3 W	H450, H455, E508 ^M mostly 1-2 W	-27 <u>+</u> 4	-14 <u>+</u> 4	-12 <u>+</u> 2	
	CPLX1 ff14SB	1.1/1.1 ^{ZnA} 1.1/1.1 ^{ZnI}	4.0 <u>+</u> 0.2	H450, E451 ^{M,B} H455, E508 ^M , 1 W	H568, E508^{M,B с}HM- О2 nd mostly 1 W	-34 <u>+</u> 4	-1 <u>+</u> 3	-23 <u>+</u> 3	
3'	CPLX2 ff14SB	0.94/1.0 ^{ZnA} 1.0/1.0 ^{ZnI}	3.8 <u>+</u> 0.2	H450, H455, E508^{M,B} mostly 1 W	H568, E508 ^{M,B c} HM- O2 nd mostly 2 W	-11 <u>+</u> 4	4 <u>+</u> 3	-8 <u>+</u> 3	
3r	CPLX2 ^{exc} ff14SB	0.44/0.98 ^{Zn} A 0.41/0.98 ^{ZnI}	4.5 <u>+</u> 0.4	H450, H455, E451^{M,B} mostly 1W	H450, H455, , E508 ^{M,B c} HM-O2 nd mostly 1 W	-23 <u>+</u> 2	-2 <u>+</u> 1	-21 <u>+</u> 2	

LJ nonbonding model 3

S1-OH⁻

Izmjena ZNA i ZNI tijekom MD

QMMM račun CPLX1 i CPLX2

MD- cplx

		t _i /t _{total} (μs)	<zna–zni> (Å)</zna–zni>	ZnA ligands		MMGBSA(kcal/mol)			
Model #	SYSTEM Force field				Znl ligands	Receptor: DPP III Ligand: ZnA + ZnI	Receptor: DPP III Ligand: ZnA	Rec: DPP III+ ZnA Ligand: ZnI	
D2	CPLX1 ff14SB	0.5/0.5 ^{znA} 0.5/0.5 ^{znI}	5.2±0.3	H450, H455, E508 ^{M,B} mostly 1 W	E508 ^M mostly 4 W	-114±7	-93±5	-18±4	
	CPLX2 ff14SB	0.5/0.5 ^{znA} 0.44/0.5 ^{znI}	5.4±0.3	H450, H455, E508 ^{м,в} 1W	H568, E508^{M,B} ^сHM-O2nd mostly 2 W	-150±8	-85±5	-39±4	
2	CPLX1 ff03	0.24/0.25 ^{znA} 0.24/0.25 ^{znI}	5.2 <u>+</u> 0.3	H450, H455 , E508^M, E451 ^M 1-2 W	H565, E508^м mostly 2 W	-26 <u>+</u> 2	0 <u>+</u> 1	-22 <u>+</u> 2	
3	CPLX1 ff14SB	1.1/1.1 ^{ZnA} 1.1/1.1 ^{ZnI}	4.0 <u>+</u> 0.2	H450, E451 ^M H455, E508 ^M , 1 W	H568, E508^{M,B} ^сHM-O2nd mostly 1 W	-34 <u>+</u> 4	-1 <u>+</u> 3	-23 <u>+</u> 3	
	CPLX1 ff14SB	1.1/1.2 ^{ZnA} 0.5/1.2 ^{ZnI}	4.0 <u>+</u> 0.2	H450, E451 ^M H455, E508 ^M , 1 W	H568, E508 ^M ^c HM-O2 nd 1 W	-31 <u>+</u> 3	-2 <u>+</u> 2	-22 <u>+</u> 3	
	CPLX2 ff14SB	0.32/0.34 ^{ZnA} 0.32/0.34 ^{ZnI}	11.6 <u>+</u> 0.9	H450, H455, E508 ^M , mostly 2 W	D396 ^{M,B} , D496 ^{M,B} 1-2 W	-25 <u>+</u> 3	-12 <u>+</u> 2	-12 <u>+</u> 3	
	CPLX2 ff14SB	0.28/0.28 ^{ZnA} 0.08/028 ^{ZnI}	18.6 <u>+</u> 12.7	H450, H455, E508 ^M , 1 W	E508^M ^c HM-O2 nd 1 W	-21 <u>+</u> 5	-4 <u>+</u> 3	-17 <u>+</u> 3	
3'	CPLX2 ff14SB	0.94/1.0 ^{ZnA} 1.0/1.0 ^{ZnI}	3.8 <u>+</u> 0.2	H450, H455, E508^{M,B} mostly 1 W	H568, E508^{M,B} ^с HM-O2 nd mostly 2 W	-11 <u>+</u> 4	4 <u>+</u> 3	-8 <u>+</u> 3	
3r	CPLX2 ff14SB	0.44/0.72 ^{ZnA} 0.21/0.72 ^{ZnI}	4.5 <u>+</u> 0.4	H450, H455, E451^{M,B} mostly 1W	H568, E508^{M,B} ^с HM-O2 nd mostly 1 W	-21 <u>+</u> 3	-2 <u>+</u> 2	-14 <u>+</u> 5	

MD-CPLX2-m3

ZNA

