

Dipeptidyl Peptidase III pathophysiological role(s) in human

Involvement of Dipeptidyl Peptidase III in Oxidative Stress and Pain Regulation

Sanja Tomić Institut Ruđer Bošković Zagreb, Croatia

• Family of DPP IIIS (M49, zinc dependent metalo enzymes widely spread).

SP|Q9NY33|DPP3_HUMANTQRE--KLTFL-EEDDKDLYILWKGPSFDVQVGLHELL-GHGSGKLFVQDEKGAFNFDQE474SP|Q08225|DPP3_YEASTSSKH--PPSFI-SQEDRPIFEKYQSDSFEVQVGIHELL-GHGSGKLLTEF-TDGFNFDKE483TR|Q8A6N1|Q8A6N1_BACTNAHGNGFNEEFVCNDEERQRIDQYGDLTGELHTDLHECL-GHGSGKLLPGVDPD------465TR|Q7MX92|Q7MX92_PORGIARGTGLYEEFIPDEEVRRHVELHADLTDSLHTDLHECL-GHGSGQLLPGVPGD------449TR|H1XW48|H1XW48_9BACTLLKP--IAEKVLFAEQLPLVT---FEGFFNHTLMHEISHGLGPGKIVLNG-------394TR|A9TLP4|A9TLP4_PHYPAILLP--IANVCVEASQRGAVD---FDSFFTHTICHECCHGIGPHNIVTPD--G------607.***

SP Q9NY33 DPP3_HUMAN 7	IVINPETGEQIQSWYRSGETWDSKFSTIA <mark>S</mark> SY	<mark>EECRAE</mark>	SVGLYLCLHPQVLEIFGFEGAD	534
SP Q08225 DPP3_YEAST N	NPPLGLDGKPVSTYYKVGETWGSKFGQLAGPF	<mark>EECRAE</mark>	VIAMFLLTNKKILDIFGFHDVE	543
TR Q8A6N1 Q8A6N1_BACTN -	ALKAYGSTI	<mark>EEARAD</mark>	LFGLYYVADPKLVELKLVPDAE	502
TR Q7MX92 Q7MX92_PORGI -	ALGEHASTL	<mark>EETRAD</mark>	LFALYFLADPKMIELGLLTDPD	486
TR H1XW48 H1XW48_9BACT -	RQTEVKKELKETY <mark>S</mark> SI	<mark>EECKAD</mark>	VLGMYNNLFMIEKGVYPP	434
TR A9TLP4 A9TLP4_PHYPA -	RASTVRLELQEVYSAI	EEAKAD	IVGLWALHFLVDKGLLPR	647
		44.4.		

DPP III orthologs

Percent of amino acid identity matrix

	hDPPIII	yDPPIII	BtDPPIII	PgDPPIII	PpDPPIII	CaDPPIII
hDPPIII	100	36.4	23.95	23.65	19.52	22.72
yDPPIII	36.4	100	21.77	22.69	17.41	19.33
BtDPPIII	23.95	21.77	100	49.92	22.89	22.31
PgDPPIII	23.65	22.69	49.92	100	20.34	22.09
PpDPPIII	19.52	17.41	22.89	20.34	100	42.21
CaDPPIII	22.72	19.33	22.31	22.09	42.21	100

2008. \rightarrow yeast DPP III (PBD id 2CSK) **2009.** \rightarrow human DPP III (PBD id 3FVY)

Molecular mass ~61-103 kDa

Zn²⁺ crucial for activity coordinated by AA from motifs **HE**XXG**H** and E**E**XR(K)AE(D)

RSC Adv. **8** (2018), 13310-13322.

Long range motion of human DPP III

Human Dipeptidyl Peptidase III

PEPTIDASE ACTIVITY OF DPP III Involvement in the pain regulation

Protein-protein interacton

Involvement in the oxidative stress

Hast et al. *(Cancer Res.* 2013;73(7), 2199) determined DPP III as an interactor of KEAP1, the main sensor of the oxydative stress in cell

Dipeptidyl Peptidase III in neurophatic disorders

The high concentration of DPP III in the rat spinal cord, where enkephalin-synthesizing neurons are located, suggests its role in the mammalian pain regulatory system (T. Chiba, et al. *Peptides.* **24** (2003) 773–778).

Sato *et al.* (*Japanese J. Anesthesiol.* **52** (2003) 257–263) found that the activity of DPP III in cerebrospinal fluid of patients with pain differs from that without pain.

In 2008 Thanawala *et al.* (*Curr. Drug Targets.* **9** (2008) 887–894) suggested DPP III as a potential target for pharmacological treatment of pain, and in 2018, Buckley *et al.* (*Mol. Neurobiol.* **55** (2018) 2420–2430) found that the DPP3 gene is regulated differently in patients with CNP than in the normal population.

In addition, the endogenous heptapeptide spinorphin and its truncated form tynorphin have been found to inhibit DPP III peptidase activity, and Ueda *et al.* (*Peptides.* **21** (2000) 1215–1221) demonstrated that spinorphin can induce analgesia in mice.

Neuropeptides substrates (inhibitors) of DPP III

I	-			
peptide	sequence HPLC-MS (cleaved) ^a K _d / μ M ^b	HPLC-MS	Ka / uM ^b	К: / цМ ^с
peptide				
I-tynorphin	IVYPW	Y	0.0973 ± 0.0091	0.00045 ± 0.00005
S-tynorphin	SVYPW	Y	0.298 ± 0.061	0.0077 ± 0.0007
tynorphin	VVYPW	Y	0.386 ± 0.127	0.0112 ± 0.0008
valorphin	<mark>VVYPWTQ</mark>	Y	<mark>1.78 ± 0.21</mark>	0.0365 ± 0.0029
angiotensin II	DRVYIHPF	Y	2.22 ± 0.24	4.4 ± 0.5
Leu-valorphin-Arg	LVVYPWTQR	Y	<mark>2.50 ± 1.92</mark>	<mark>5.2 ± 0.5</mark>
hemorphin-4	YPWT	Y	<mark>39.4 ± 14.6</mark>	<mark>6.5 ± 0.7</mark>
hemorphin-4 endomorphin-2	YPWT YPFF	Y Y	<mark>39.4 ± 14.6</mark> 40.1 ± 4.8	<mark>6.5 ± 0.7</mark> 10.4 ± 1.0
hemorphin-4 endomorphin-2 Leu-enkephalin	YPWT YPFF YGGFL	Y Y Y	39.4 ± 14.6 40.1 ± 4.8 118 ± 39	6.5 ± 0.7 10.4 ± 1.0 10.4 ± 1.4
hemorphin-4 endomorphin-2 Leu-enkephalin β-casomorphin	YPWT YPFF YGGFL YPFVEPI	Y Y Y Y	39.4 ± 14.6 40.1 ± 4.8 118 ± 39 130 ± 87	6.5 ± 0.7 10.4 ± 1.0 10.4 ± 1.4 1.0 ± 0.1
hemorphin-4 endomorphin-2 Leu-enkephalin β-casomorphin Arg-vasopressin	YPWT YPFF YGGFL YPFVEPI C*YFQNC*PRG	Y Y Y Y N	39.4 ± 14.6 40.1 ± 4.8 118 ± 39 130 ± 87 n. d.	$ \begin{array}{r} 6.5 \pm 0.7 \\ 10.4 \pm 1.0 \\ 10.4 \pm 1.4 \\ 1.0 \pm 0.1 \\ n. d.^{d} \end{array} $
hemorphin-4 endomorphin-2 Leu-enkephalin β-casomorphin Arg-vasopressin hemopressin	YPWT YPFF YGGFL YPFVEPI C*YFQNC*PRG PVNFKFLSH	Y Y Y Y N N N	39.4 ± 14.6 40.1 ± 4.8 118 ± 39 130 ± 87 n. d. n. d.	$ \begin{array}{r} 6.5 \pm 0.7 \\ 10.4 \pm 1.0 \\ 10.4 \pm 1.4 \\ 1.0 \pm 0.1 \\ n. d.^{d} \\ n. d. \end{array} $
hemorphin-4endomorphin-2Leu-enkephalinβ-casomorphinArg-vasopressinhemopressinβ-neoendorphin	YPWT YPFF YGGFL YPFVEPI C*YFQNC*PRG PVNFKFLSH YGGFLRKYP	Y Y Y N N N N	39.4 ± 14.6 40.1 ± 4.8 118 ± 39 130 ± 87 n. d. n. d. n. d. n. d. n. d.	6.5 ± 0.7 10.4 ± 1.0 10.4 ± 1.4 1.0 ± 0.1 n. d. ^d n. d. n. d.

HPLC-MS, ITC and fluorimetric measurements

* - denoting a disulfide bridge

- ^a cleavage (Y yes or N no) determined by HPLC-MS as reduction of peptide amount after incubation of 1 mM peptide with 0.18 μM enzyme after 24 h at 25 °C in ammonium bicarbonate buffer pH = 7.4
- ^b Thermodynamic parameters of peptide binding to human DPP III at 25 °C and pH = 7.5 in 20 mM TrisHCl buffer
- ^c inhibition constant for inhibition of enzyme-catalyzed cleavage of artificial substrate Arg₂-2NA at 25 °C in 20 mM TrisHCl buffer pH = 7.5
- d no inhibition trend detected with peptide in the range of 1-50 μM

Neuropeptides substrates of Dipeptidyl Peptidase III

Kinetic parameters of peptide degradation as measured by ITC using SIM at 25°C in 50 mM TrisHCl buffer with 100 mM NaCl and pH 7.5

	Δ _r H (kJ/mol)	K _m (μΜ)	k _{cat} (s ⁻¹)	k _{cat} /K _m (s ⁻¹ M ⁻¹)
Leu-valorphin-Arg	-6.4 ± 0.3	33.9 ± 6.4	0.35 ± 0.09	1.03 · 10 ⁴
Leu-enkephalin	-6.55 ± 0.07	34.7 ± 5.7	1.08 ± 0.12	$3.11 \cdot 10^{4}$
hemorphin-4	-7.5 ± 0.7	55.1 ± 13.1	6.11 ± 0.96	1.11 · 10 ⁵

MD simulations (2x1µs)

MM/PBSA energies calculated during two 1 μ s long MD simulations of the DPP III in complexes with selected neuropeptides

Karačić et al. Neuropeptides, substrates and inhibitors of human dipeptidyl peptides III, experimental and computational study - a new substrate identified, IJBM, under review

Low energy structure of the

a) DPP III – hemorphin-4 complex

b) DPP III – tynorphin complex

Karačić et al. Neuropeptides, substrates and inhibitors of human dipeptidyl peptides III, experimental and computational study - a new substrate identified, IJBM, under review

MM/GBSA binding enthalpies calculated for amino acid residues of the protein on a set of conformers sampled during the last 0.6 µs of 1 µs long MD simulations with the lowest binding enthalpies (± SD).

Number of water molecules within 2.5 Å from Zn⁺² during MD simulations of DPP III in complexes with neuropeptide

Distances: a) water O – carbonyl carbon at P1 position b) Zn⁺² – carbonyl oxygen at P1 position

Karačić et al. Neuropeptides, substrates and inhibitors of human dipeptidyl peptides III, experimental and computational study - a new substrate identified, IJBM, under review

Mechanism of hydrolysis

QM/MM B97D [6-31G(d) + LanL2DZ-ECP] calculations

Int. J. Mol. Sci **23** (2022) 1858, 24

PMF profiles for the release of substrates and products from the enzyme binding site into the solvent environment

DPP III - Leu-enkephalin

DPP III - tynorphin

Šimaga et al. (*Eur. J. Cancer* **1998**, *34*, 399) detected increased levels and activity of DPP III in malignant endometrial tissue Šimaga et al. (*Gynecol. Oncol.* **2003**, *91*, 194) found that expression of DPP III has been positively correlated with ovarian cancer aggressiveness

Gamrekelashvil et al. (*Cell. Mol. Life Sci.* 2015, 72, 273) showed that DPP III is epigenetically induced in liver cancer cells by promoter hypomethylation, while DPP III and thimet oligopeptidase-1 (TOP-1) decrease the immunogenicity of necrotic tumor cells by blocking antigen cross-presentation

Miettinen *et al.* (*Cancers* (*Basel*). **13**, (2021). DOI: 10.3390/cancers13071527) found that **higher expression of DPP III correlates with shorter survival of patients with multiple myeloma**, and the increased level of DPP III in patients with relapsed multiple myeloma compared to newly diagnosed patients suggests that it may be involved in cancer

KEAP1-NRF2 - pathway in regular conditions

Kelch-like ECH-associated protein 1 (KEAP1) – NRF2 (Nuclear factor [erythroid-derived 2]-like 2 protein)

KEAP1 mediated degradation of NRF2 *via* the ubiquitin-proteosome pathway

KEAP1-NRF2 - pathway under the oxidative stress

KEAP1-DPP III interactions

Dipeptidyl peptidase III – Kelch domene

⁴⁸⁰ETGE⁴⁸³ - R620, R623, R624 interactions

J. Biomol. Struct. Dyn. **2021**, 39, 6870–6881

The ETGE motif detachment is an endergonic process

DPP III cancer mutations: impact on the affinity for the Kelch domain

MST measurements. Binding affinity of DPP III mutants for the Kelch domain compared to the affinity of the wild-type protein, expressed as the ratio K_d (WT)/ K_d (mutant).

WT	1.0
P479S	18.4
E480Q	0.1
T481M	0.1
G482C	0.8
Q484H	2.1
R510W	0.3
R623W	160.0
R638L	2.0
R638W	2.0
R703C	1.7

DPP III $K_d(WT)/K_d(M)$

K _d of R623W	~ 5 × 10 ⁻⁹ mol dm ⁻³
K _d of WT DPP III	~ 8 × 10 ⁻⁷ mol dm ⁻³

Such a significant increase in affinity for the variant is consistent with our proposed mechanism of binding of DPP III to KEAP1.

MM/GBSA energies calculated during 700 ns of MD simulations

The lowest-energy structure of the DPP III (cyan) – Kelch (orange) complex with the ETGE motif in red.

DPP III	MMGBSA (kcal/mol) ^{min}
WT	-80
P479S	-116
E480Q	-42
T481M	-63
G482C	-56
R510W	-69
R623W	-65*

*The signifficantly lower binding affinity measured by MST is due to the easier release of the flexible loop from the protein body, the binding affinity increased. Binding of DPP III to KEAP1 is a two-step process involving endergonic translocation of the loop, followed by exergonic interactions between DPP III and the Kelch domain.

Effect of DPP III mutations on the Kelch - DPP III structure

Distribution of the intermolecular hydrogen bonds determined in the 20 ns long interval with the lowest MM/GBSA energy.

Effect of DPP III mutations on the Kelch - DPP III structure

Changes in the intermolecular interactions

Effect of DPP III mutations on expression of the NRF2 controlled genes

Western blot analysis of the relative expression of KEAP1, NRF2, HMOX1 (Ho1), NQO1 and SOD1 in the cells transfected with EV, WT and R623W, respectively. R623W was shown to increase the expression of some NRF2-controlled genes.

Relative expression of NQO1 mRNA in HEK293T cells

- The neuropeptide hemorphin-4 was identified as a new substrate of DPP III, whereas valorphine, Leu-valorfin-Arg, and β-casomorfin, previously identified as inhibitors of DPP III, were found to be its substrates.
- The enzymatic cycles for the hydrolysis of Leu-enkaphalin and tynorphin by DPP III were determined, and it was found that tynorphin is an inhibitor because of pronounced stabilization of its products in the enzyme active site.
- The influence of different mutations of DPP III, present in human cancer, on the affinity of DPP III for Kelch was investigated, and it was found that the R623W and P479S mutations significantly improved this affinity. The R623W mutation was found to increase the expression of some NRF2 regulating genes in the cell.

Acknowledgement

Sara Matić

Zrinka Karačić

Lidija Brkljačić

Antonija Tomić

Mihaela Matovina

Ana Tomašić Paić

••

This work has been fully supported by Croatian Science Foundation under the project IP-2018-01-2936

Thank you!

Questions? Sugestions?