Heterologous expression and purification of SH2 domain containing protein 3C, protein with a predicted high content of intrinsically disordered regions

M. Matovina¹, A. Tomašić Paić¹, S. Matić¹, L. Barbarić¹, I. Crnolatac¹, T. Berger², F. Miočić Stošić¹, ¹ Ruđer Bošković Institute, Zagreb, Croatia

² University of Graz, Austria

SILAC-MS DPP3 interactome

1 L	172 220	319	586	586	
		SH2		Ras GEF-like	
		SH2		Ras GEF-like	
				Ras GEF-like	

Helix	33.8 %
Antiparallel	8.3 %
Parallel	9.1 %
Turn	6.2 %
Others	42.7 %

CONCLUSION

SH2D3C was identified as a putative interactor of DPP3 by SILAC-MS approach. DPP3 is a peptidase, biochemically and structurally well characterized, while data about SH2D3C structure are scarce. To date, only the crystal structure of the C-terminal Ras-GEF-like domain of SH2D3C in the complex with BCAR1 (alt. name p130Cas) protein was determined (PDB: 3T6G). AlphaFold structure predictions of the canonical isoform 1 indicate that SH2D3C contains large proportion of internally disordered regions (IDRs), while further biochemical and biophysical investigations of SH2D3C protein are hindered by the difficulties with its heterologous expression in *E. coli*. Our efforts to express SH2D3C in *E. coli* were largely unsuccessful, however, isoform 3 with GST-tag was successfully expressed by baculovirus-mediated protein expression in the insect cells, and it was confirmed that more than 40 % of the protein is disordered, but it is stable and is being used for further biochemical, biophysical and structural analysis.

Reference: Mace, Peter D., Yann Wallez, Małgorzata K. Dobaczewska, Jeongeun J. Lee, Howard Robinson, Elena B. Pasquale, and Stefan J. Riedl. 2011. "NSP-Cas Protein Structures Reveal a Promiscuous Interaction Module in Cell Signaling." Nature Structural and Molecular Biology 18 (12): 1381–87. https://doi.org/10.1038/nsmb.2152.

Acknowledgements: This work was funded by the Croatian Science Foundation (CSF) project "Dipeptidyl peptidase III interaction with SH2 domain-containing protein 3C – possible link between oxidative stress response and cell migration" (IP-2020-02-6743).