

COMPUTATIONAL STUDY OF THE HUMAN DPP III CATALYZED PEPTIDE HYDROLYIS – DIFFERENCE BETWEEN "GOOD" AND "SLOW" SUBSTRATES

ANTONIJA TOMIĆ INSTITUT RUĐER BOŠKOVIĆ

Dipeptidyl peptidase III (DPP III)

• Expressed in **prokaryotes** and **eukaryotes**

• Two-domain zinc-exopeptidase (M49 family)

• Hydrolyzes dipeptides from the N-terminal of its substrates

Upper domain Zn²⁺ Lower domain H450 E508 H_2O

I. Schechter and A. Berger, Biochem. Biophys. Res. 27 (1967) 157-162.

IMPLIED ROLE IN:

√...

- ✓ protein catabolism
- ✓ blood pressure regulation
- pain modulation (*in vitro* hydrolyzes a number of biologically active (neuro)peptides)

✓ defense against oxidative stress

BROAD SUBSTRATE SPECIFICITY (*in vitro*) - a preference for:

- a positively charged N-terminus,
- the ability (propensity) of the substrate
 to form β-sheet secondary structure
- hydrophobic AA residues at the P1' position
- ✤ a proline residue at the P1 position

Active site

Active site

*P. Kumar Baral et al, The Journal of Biological Chemistry, 283 (2008) 32, 22316

- Met-enkephalin (5E33)
- Leu-enkephalin (5E3A)
- Angiotensin-II (5E2Q)
- Endomorphin-2 (5EHH)
- IVYPW (5E3C)
- Unbound (5EGY)

- Met-enkephalin (5E33)
- Leu-enkephalin (5E3A)
- Angiotensin-II (5E2Q)
- Endomorphin-2 (5EHH)
- IVYPW (5E3C)
- Unbound (5EGY)

DPP III – Met-enkephalin (pdb: 5E3A)

- Met-enkephalin (5E33)
- Leu-enkephalin (5E3A)
- Angiotensin-II (5E2Q)
- Endomorphin-2 (5EHH)
- IVYPW (5E3C)
- Unbound (5EGY)

DPP III - IVYPW (pdb: 5E3C)

DPP III – Met-enkephalin (pdb: 5E3A)

- Met-enkephalin (5E33)
- Leu-enkephalin (5E3A)
- Angiotensin-II (5E2Q)
- Endomorphin-2 (5EHH)
- IVYPW (5E3C)
- Unbound (5EGY)

DPP III - IVYPW (pdb: 5E3C)

DPP III – Met-enkephalin (pdb: 5E3A)

- Met-enkephalin (5E33)
- Leu-enkephalin (5E3A)
- Angiotensin-II (5E2Q)
- Endomorphin-2 (5EHH)
- IVYPW (5E3C)
- Unbound (5EGY)

DPP III - IVYPW (pdb: 5E3C)

DPP III – endomorphin2 (2016. pdb: 5ehh)

LEU-ENKEPHALIN

("GOOD" SUBSTRATE)

• Baršun et al., *Biol. Chem.* 388 (2007) $K_{\rm m} = 6.5 \,\mu{\rm M}$ $k_{\rm cat} = 9.0 \,{\rm s}^{-1}$

TYNORPHIN

- Jha et al. JBC 2020 → mice DPP III
- Y. Yamamoto et al . *Peptides* **2000** \rightarrow DPP III from a rat brain K_i (VVYPW)= 7.5 × 10⁻⁸ mol L⁻¹
- T. Chiba et. al. *Peptides* **2003** \rightarrow recombinant DPP III $K_i(VVYPW) = 2.67 \pm 0.58 \mu M$ $K_i(IVYPW) = 0.100 \pm 0.011 \mu M$ $K_i(WVYPW) = 0.126 \pm 0.015 \mu M$

MOLECULAR MECHANIC - QUANTUM MECHANIC (QM/MM) CALCULATIONS

2-layer **ONIOM** calculations (Gaussian 09)

MOLECULAR MECHANIC - QUANTUM MECHANIC (QM/MM) CALCULATIONS

2-layer **ONIOM** calculations (Gaussian 09)

COMPLEX + 1st and 2nd enzyme solvatation sphere

MOLECULAR MECHANIC - QUANTUM MECHANIC (QM/MM) CALCULATIONS

2-layer **ONIOM** calculations (Gaussian 09)

 $E_{\text{high,real}} \approx E_{\text{ONIOM}} = E_{\text{low, real}} +$ $E_{\text{high, model}} - E_{\text{low, model}}$

COMPLEX + 1st and 2nd enzyme solvatation sphere

MOLECULAR MECHANIC - QUANTUM MECHANIC (QM/MM) CALCULATIONS

2-layer **ONIOM** calculations (Gaussian 09)

COMPLEX + 1st and 2nd enzyme solvatation sphere

High-level: B97D/[6-31G(d) + LANL2DZ-ECP] Low-level: parm96 AMBER force field

FIX protein residues and water molecules > 8 Å from the substrate

VIBRATIONAL ANALYSIS - minima and saddle points

LEU-ENKEPHALIN hydrolysis Tyr - Gly - Gly - Phe - Leu

LEU-ENKEPHALIN hydrolysis Tyr – Gly – Gly – Phe – Leu

B97D/[6-31G(d)+LanL2DZ-ECP] + ZPVE_{B97D/[6-31G(d)+LanL2DZ-ECP]}

A. Tomić & S. Tomić Int. J. Mol. Sci., 23 (2022) 3; 1858

LEU-ENKEPHALIN hydrolysis Tyr – Gly – Gly – Phe – Leu

DPP III

A. Tomić & S. Tomić Int. J. Mol. Sci., 23 (2022) 3; 1858

*https://www.stereoelectronics.org/webSC/SC_04.html

*https://www.stereoelectronics.org/webSC/SC_04.html

TYNORPHIN hydrolysis Val – Val – Tyr – Pro – Trp

TYNORPHIN hydrolysis

B97D/[6-31G(d)+LanL2DZ-ECP] + ZPVE_{B97D/[6-31G(d)+LanL2DZ-ECP]}

Val – Val – Tyr – Pro – Trp

TYNORPHIN hydrolysis

Val – Val – Tyr – Pro – Trp

"SLOW" SUBSTRATE

DPP III - tynorphin

"good" substrate DPP III – Leu-enkephalin

"SLOW" SUBSTRATE

DPP III - tynorphin

"SLOW" SUBSTRATE DPP III - tynorphin

"SLOW" SUBSTRATE DPP III - tynorphin

"SLOW" SUBSTRATE

DPP III - tynorphin

Molecular Dynamics (MD) simulations

DPP III – tynorphin; DPP III – tynorphin product; DPP – Leu-enkephalin; DPP III – Leu-enkephalin product program AMBER 20 \rightarrow 100 ns, *NpT*, 300 K, TIP3P, ff14SB, hybrid bonded/nonbonded parameters for Zn(II)*

*A. Tomić et. al., J. Chem. Inf. Model. 2019, 59, 8, 3437–3453

Molecular Dynamics (MD) simulations

DPP III – tynorphin; DPP III – tynorphin product; DPP – Leu-enkephalin; DPP III – Leu-enkephalin product; program AMBER 20 \rightarrow 100 ns, *NpT*, 300 K, TIP3P, ff14SB, hybrid bonded/nonbonded parameters for Zn(II)* DPP III – substrate

*A. Tomić et. al., J. Chem. Inf. Model. 2019, 59, 8, 3437–3453

Molecular Dynamics (MD) simulations

DPP III – tynorphin; DPP III – tynorphin product; DPP – Leu-enkephalin; DPP III – Leu-enkephalin product program AMBER 20 \rightarrow 100 ns, *NpT*, 300 K, TIP3P, ff14SB, hybrid bonded/nonbonded parameters for Zn(II)*

*A. Tomić et. al., J. Chem. Inf. Model. 2019, 59, 8, 3437–3453

MM/PBSA binding energy

MM/PBSA	complex	receptor	ligand	ΔH/ (kcal/mol)	SD/ (kcal/mol)
Complex with SUBSTRATE	DPP III – Leu-enkephalin	DPP III + WAT	Leu-enkephalin	-17.73	4.83
	DPP III – tynorphin	DPP III + WAT	tynorphin	-26.56	5.33
Complex with PRODUCT	DPP III – Leu-enkephalin	DPP III + C-prod	N-prod	-6.97	3.80
	DPP III – tynorphin	DPP III + C-prod	N-prod	-27.88	2.93
	DPP III – Leu-enkephalin	DPP III + N-prod	C-prod	-18.13	4.56
	DPP III – tynorphin	DPP III + N-prod	C-prod	-34.40	3.43

Adaptive steered MD simulations

- force constant of 5 kcal mol⁻¹ $Å^{-2}$ and pulling velocity of 0.5 or 1 Å/ns
- reaction coordinate was partitioned into 25 equal segments (each 1 Å in long) and either 25 (each 2 ns long) or 50 (each 1 ns long) trajectories were simulated per stage

DPP III – tynorphin $\overset{VVYPW}{=}$

THANKS TO

- Prof. Sanja Tomić, LBPMM, Institut Ruđer Bošković
- This work has been supported by:
 - Croatian Science Foundation under the project IP-2018-01-2936
 - Foundation of the Croatian Academy of Sciences and Arts
- Isabella cluster (http://www.srce.unizg.hr/en/isabella/) for computer time.

