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A B S T R A C T   

Alzheimer’s disease (AD) is often not recognized or is diagnosed very late, which significantly reduces the 
effectiveness of available pharmacological treatments. Metabolomic analyzes have great potential for improving 
existing knowledge about the pathogenesis and etiology of AD and represent a novel approach towards 
discovering biomarkers that could be used for diagnosis, prognosis, and therapy monitoring. In this study, we 
applied the untargeted metabolomic approach to investigate the changes in biochemical pathways related to AD 
pathology. We used gas chromatography and liquid chromatography coupled to mass spectrometry (GC–MS and 
LC-MS, respectively) to identify metabolites whose levels have changed in subjects with AD diagnosis (N = 40) 
compared to healthy controls (N = 40) and individuals with mild cognitive impairment (MCI, N = 40). The 
GC–MS identified significant differences between groups in levels of metabolites belonging to the classes of 
benzene and substituted derivatives, carboxylic acids and derivatives, fatty acyls, hydroxy acids and derivatives, 
keto acids and derivatives, and organooxygen compounds. Most of the compounds identified by the LC-MS were 
various fatty acyls, glycerolipids and glycerophospholipids. All of these compounds were decreased in AD pa-
tients and in subjects with MCI compared to healthy controls. The results of the study indicate disturbed 
metabolism of lipids and amino acids and an imbalance of metabolites involved in energy metabolism in in-
dividuals diagnosed with AD, compared to healthy controls and MCI subjects.   

1. Introduction 

Dementia is a broad term which describes a group of symptoms 
related to disturbances in memory, thinking and social abilities, all 
caused by different diseases that affect the brain. The major cause of 
dementia in older adults is Alzheimer’s disease (AD). Taking into ac-
count the current demographic trend where life expectancy of the 
population is constantly increasing, one can expect that in the near 
future AD will become one of the leading medical, social, and economic 

burdens of all modern societies. Unfortunately, AD is often unrecognized 
or diagnosed too late, which significantly reduces the effectiveness of 
treatment with cholinesterase inhibitors and/or memantine. Specif-
ically, the diagnosis of AD requires excluding all other pathologies that 
could be the cause of dementia symptoms by combining various neu-
roimaging, neuropsychological, and laboratory tests (Zvěřová, 2019). 
The disadvantage with this kind of approach is that it is mainly effective 
in patients who already have significant cognitive impairment, making 
it difficult to diagnose people in the early stages of the disease and thus 
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resulting in the reduction of treatment efficiency with cholinesterase 
inhibitors and/or memantine. The identification of new AD biomarkers 
is essential for the elucidation of molecular mechanisms related to the 
pathogenesis and progression of this disease, the development of more 
reliable diagnostic tests and new therapeutic approaches. Numerous 
studies have shown that pathological processes associated with AD can 
manifest, not only in the central nervous system, but also at the pe-
riphery (Rani et al., 2017). These discoveries emphasized the impor-
tance of finding peripheral, non-invasive and easily accessible 
biomarkers that will enhance the development of new diagnostic tests 
(Zvěřová, 2019). 

Metabolomics is one of the “omics” approaches that enables the 
monitoring of changes occurring downstream of genomic, tran-
scriptomic and proteomic modifications. Detecting the level of endog-
enous metabolites, which represent the end point of all biochemical 
reactions, could be used as a fairly sensitive measure of an individual’s 
overall health status. Metabolomic analyzes have a great potential for 
improving the existing knowledge about the pathogenesis and etiology 
of AD and represent a new approach towards discovering biomarkers 
that could be used for diagnosis, prognosis and therapy monitoring in 
patients with AD (Wilkins and Trushina, 2017). Such a holistic approach 
is crucial particularly in the case of multifactorial disorders such as AD. 
Untargeted metabolomic analysis enables the determination of entire 
metabolomic profiles without a pre-set hypothesis and it has an excel-
lent potential for discovering new biomarkers of certain pathological 
conditions. In the case of AD, it is expected that people diagnosed with 
this type of dementia have a disturbed metabolism of lipids and amino 
acids and an imbalance of metabolites involved in the energy meta-
bolism (Huo et al., 2020; Konjevod et al., 2021). 

In this study, we used the untargeted metabolomic approach (Fig. 1) 
to investigate changes in biochemical pathways related to the pathology 
of AD, with the purpose of finding new and easily accessible indicators of 
the processes underlying this disease. We used gas chromatography 

coupled to mass spectrometry (GC–MS) and liquid chromatography 
coupled to electrospray ionization mass spectrometry (LC-MS ESI) in 
order to identify metabolites whose levels have changed in subjects with 
AD diagnosis compared to healthy controls and individuals with mild 
cognitive impairment (MCI). Experimental design and metabolomics 
workflow are presented in Fig. 1. We hypothesized that the study would 
offer new, easily accessible biochemical biomarkers for aiding the 
diagnosis of AD. 

2. Materials and methods 

2.1. Participants 

Out of 120 subjects included in the study, 40 of them were healthy 
controls, 40 subjects with MCI, and 40 patients with AD. All subjects 
were recruited at the University Psychiatric Hospital Vrapce (Zagreb, 
Croatia). 

The subjects with AD were diagnosed according to DSM-5 criteria 
(APA, 2013) and the criteria of the National Institute of Neurological 
and Communication Disorders and Stroke, which is part of the American 
National Institute of Health (NINCDS-ADRDA; National Institute of 
Neurological and Communicative Disorders and Stroke and Alzheimer’s 
Disease and Related Disorders Association) (McKhann et al., 2011). 
Subjects with MCI were diagnosed using the criteria defined by Petersen 
and colleagues (Petersen et al., 2018) and by Albert and colleagues 
(Albert et al., 2011). Cognitive impairment was evaluated using a Mini- 
Mental State Examination (MMSE) test (Arevalo-Rodriguez et al., 2015). 

The subjects with MCI or AD were all in- and out-patients who have 
signed written informed consent and have undergone neurological ex-
amination, thyroid function examination, and serologic tests for Lyme 
disease and syphilis. The levels of vitamin B12 and B9 were also 
determined for the participants included in the study. The subjects were 
not related to each other and had not been previously prescribed with 

Fig. 1. Experimental design and metabolomic workflow of the study. 
The workflow includes sample collection, sample preparation and metabolite extraction for both GC–MS and LC-MS, multiplatform untargeted metabolomic analysis, 
data treatment, statistical analyses, identification of the compounds and interpretation of the results. 
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any antidementia medication (cholinesterase inhibitors and/or mem-
antine). Demographic and clinical parameters are shown in Table 1. 
Subjects diagnosed with vascular or mixed dementia, tumors or in-
flammatory diseases of the central nervous system, cardiovascular dis-
eases, brain trauma, systemic metabolic diseases (e.g., hypertension, 
diabetes mellitus, obesity), and other psychiatric or neurological dis-
eases (e.g., Huntington’s disease, frontotemporal dementia) were 
excluded from the study. Healthy control subjects with no pathophysi-
ological changes in the liver, following the same exclusion criteria as 
patients with AD or MCI, were also evaluated by the psychiatrist in order 
to make sure they do not have any neuropsychiatric disorder and were 
not treated with psychotropic medication. 

The study was approved by the Ethics Committee of University 
Psychiatric Hospital Vrapce, Zagreb, Croatia (approval code 23–605/ 
3–18; March 23, 2018) and carried out in line with the Helsinki Decla-
ration (World Medical Association, 2013). All subjects have signed 
informed consent prior to participating in the study and the study pro-
cedures were explained in details to the participants and/or their 
caregivers. 

2.2. Blood sample collection 

Blood sampling was carried out during routine laboratory exami-
nation and after an overnight fast. Blood (8.5 mL) was drawn into 
yellow-top BD Vacutainer™ tubes (Becton, Dickinson and Company, 
Franklin Lakes, NJ, USA) with 1.5 mL of acid citrate dextrose antico-
agulant. Plasma was separated using centrifugation (3 min at 1100 xg, 
followed by 15 min at 5030 ×g) and samples were aliquoted and stored 
at − 80 ◦C until further analysis. 

2.3. Metabolite extraction 

2.3.1. Chemicals and reagents 
For metabolomics analyses were used: acetonitrile (ACN) (LC-MS 

grade, Sigma-Aldrich, Steinheim, Germany), formic acid (FA) (MS 
grade, Sigma-Aldrich, Steinheim, Germany), heptane (Sigma-Aldrich, 
Steinheim, Germany), O-methoxyamine hydrochloride (Sigma-Aldrich, 
Steinheim, Germany), N,O-bis(trimethylsilyl) trifluoroacetamide 

(BSTFA) with 1% trimethylchlorosilane (TMCS) (Pierce Chemical Co, 
Rockford, IL, USA), and pyridine (Sigma-Aldrich, Steinheim, Ger-many). 
Ultrapure water was obtained from MilliQ®plus185 system (Millipore, 
Billerica, MA, USA). Tricosane (Sigma-Aldrich, Steinheim, Germany) 
and 4-chlorophenol (Sigma-Aldrich, Steinheim, Germany) were used as 
internal standards in GC–MS analysis. The FAME mix (mix of fatty acid 
methyl esters; methyl caprylate, methyl caprate, methyl laurate, methyl 
myristate, methyl palmitate, methyl heptadecanoate, methyl oleate, 
methyl stearate, methyl eicosanoate, methyl docosanoate) for GC–MS 
analytical platform was purchased from Supelco (Bellefonte, PA, USA). 
Ammonium trifluoroacetate (TFA(NH4)), purine, and hexakis 
(1H,1H,3H-tetrafluoropropoxy)phosphazine (HP) from API-TOF refer-
ence mass solution kit (Agilent) were diluted in 95:5 of ACN to water 
ratio and used as reference solution in LC-MS analysis. 

2.3.2. Preparation of samples for GC–MS analysis 
For the GC–MS analysis, the samples were first deproteinized by 

mixing 100 μL of each plasma sample with 300 μL of cold ACN (1:3 
ratio). The samples were vortex-mixed for 2 min and incubated on ice for 
5 min. The aliquot of each sample (100 μL) was centrifuged (16,000 xg, 
10 min, 4 ◦C), the supernatant was transferred to the crimp top clear 
glass vials with insert, and 20 μL of 4-chlorophenol (100 ppm, in ACN) 
was added. The samples were evaporated to dryness using a Speedvac 
Concentrator (Thermo Fisher Scientific, Waltham, MA). Methoximation 
was performed by adding 10 μL of O-methoxyamine hydrochloride (15 
mg/mL, in pyridine). The samples were vigorously vortex-mixed for 5 
min, followed by three cycles of ultrasonication (2 min) and vortex 
mixing (2 min). Afterwards, the vials were incubated in the dark at room 
temperature for 16 h. The next day, 10 μL of BSTFA with 1% TMCS was 
added to each vial for silylation, the samples were vortex-mixed for 5 
min, and the silylation was carried out at 70 ◦C for 1 h. After the samples 
cooled down, 100 μL of tricosane (20 ppm, in heptane) was added as an 
internal standard and the samples were vortex-mixed for 2 min. Blank 
samples (ACN to water ratio 3:1) were prepared in the same way as 
plasma samples. Individual quality control samples (QCs) were prepared 
by pooling and mixing equal volumes of each plasma sample (10 μL). 
They were processed in the same way as the plasma samples following 
all the steps previously described. 

2.3.3. Preparation of samples for LC-MS analysis 
On the day of analysis, the plasma samples were slowly defrosted on 

ice and vortex-mixed for 2 min. For metabolite extraction, 100 μL of 
each sample was mixed with cold ACN (1:3 ratio), vortex-mixed for 2 
min and incubated on ice for 5 min. After centrifugation (16,000 xg, 10 
min, 4 ◦C), the remaining supernatant (200 μL) was transferred to the 
crimp top clear glass vials with an insert. Individual QCs were prepared 
by pooling and mixing equal volumes of each plasma sample (10 μL). 
They were processed in the same way as the plasma samples following 
all the steps previously described. Blank samples (ACN to water ratio 
3:1) were also prepared in the same way as plasma samples. 

2.4. Metabolomic fingerprinting 

2.4.1. GC–MS analysis 
For the metabolomic fingerprinting of plasma samples, the Agilent 

7890A gas chromatograph, with an autosampler (Agilent Technologies 
7693), coupled to an inert MSD with Quadrupole (Agilent Technologies 
5975) was used. For each sample, a volume of 2 μL was injected, with a 
split ratio 1:10, into a Restek 20,782 deactivated glass-wool split liner. 
Compounds were separated using the GC-Column DB-5MS (length: 30 
m, internal diameter: 0.25 mm, film thickness: 0.25 μm, packing: 95% 
dime-thylpolysiloxane/5% diphenylpolysiloxane) with a pre-column 
(10 m J&W integrated with Agilent 122–5532G). The constant flow 
rate of the helium carrier gas was set to 1 mL/min, and the injector 
temperature was kept constant at 250 ◦C. The temperature of the column 
oven was set at 60 ◦C (held for 1 min), with an increased rate of 10 ◦C/ 

Table 1 
Demographic and clinical characteristics of healthy subjects and individuals 
diagnosed with MCI or AD. All data are presented as median (range).   

Subjects Kruskal-Wallis 
ANOVA df = 2  

HC 
(N = 40) 

MCI 
(N = 40) 

AD 
(N = 40) 

p H 

Age (years) 
69.0 
(65.0–77.0) 

74.0 
(67.0–87.0) 

78.0 
(67.0–89.0) <0.001 53.55 

BMI (kg/m2) 
30.5 
(23.0–37.0) 

22.0 
(18.0–29.0) 

23.4 
(19.0–32.0) <0.001 42.75 

Total 
cholesterol 
(mmol/l) 

4.5 
(2.9–7.8) 

5.7 
(3.2–8.8) 

5.8 
(3.2–8.8) 0.051 5.95 

HDL- 
cholesterol 
(mmol/l) 

1.2 
(0.5–2.0) 

1.4 
(0.7–3.0) 

1.3 
(0.7–3.0) 0.090 4.81 

LDL- 
cholesterol 
(mmol/l) 

2.8 
(1.3–5.4) 

3.1 
(0.8–4.9) 

3.3 
(0.8–5.8) 0.311 2.33 

Triglycerides 
1.6 
(0.6–3.7) 

1.9 
(0.8–6.7) 

1.9 
(0.8–6.7) 0.176 3.48 

Blood glucose 
(mmol/l) 

5.0 
(3.4–10.2) 

5.5 
(4.5–11.8) 

5.7 
(4.7–11.8) 0.008 9.58 

MMSE score 
30.0 
(29.0–30.0) 

27.0 
(24.0–28.0) 

14.0 
(9.0–23.0) <0.001 107.37 

AD, Alzheimer’s disease; HC; healthy controls; HDL, high-density lipoproteins; 
BMI, body mass index; LDL, low-density lipoproteins; MCI, mild cognitive 
impairment; MMSE, mini-mental state examination. 
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min until the temperature reaches 325 ◦C. The temperature was main-
tained for up to 10 min before the injection of the next sample. The 
detector transfer line was set at 290 ◦C, while the filament source and 
quadrupole temperatures were set at 230 ◦C and 150 ◦C, respectively. 
The total analysis for each sample lasted 37.5 min. The electron ioni-
zation (EI) energy was set to 70 eV. The system collected the mass 
spectra in a mass range between 50 and 600 m/z, at a rate of 2 spectra/s. 

2.4.2. LC-MS analysis 
The liquid chromatography system, Agilent Technologies Series 

1200 binary solvent delivery system (Agilent Technologies, Waldbronn, 
Germany), comprised of a binary pump, an integrated degasser, and an 
autosampler with a thermostat, coupled to an Agilent 6520 Accurate- 
Mass Q-TOF detector, was used to analyze the metabolic profile of the 
samples. For the separation of metabolites, a reversed-phase column 
(Discovery® HS C18 HPLC Column, 515 cm × 2.1 mm, 3 μm; Supelco, 
USA) with a pre-column (Discovery® HS C18 HPLC Column, 2 cm × 2.1 
mm, 3 μm; Supelco, USA), was used and kept at 60 ◦C during the 
analysis. The injection volume was set at 10 μL. The elution conditions 
employed a flow rate of 0.6 mL/min with a gradient of the solvent A 
(H2O with 0.1% FA) and the solvent B (ACN with 0.1% FA). The analysis 
started with 25% of the mobile phase B and then in-creased to the 95% 
of B in a time period of 35 min (0–35 min). The gradient then returned to 
the initial conditions in 1 min time (35–36 min), 25% of the mobile 
phase B, and these conditions were maintained until the end of the 
analysis (36–45 min). All the samples were analyzed in both positive and 
negative ESI mode (full-scan ranging from 50 to 1000 m/z), with a scan 
rate of 1.02 scans/s. Two reference masses were continuously infused 
during the entire duration of the analysis to ensure a constant mass 
correction: 121.0509 (purine, detected m/z [C5H4N4 + H]+) and 
922.0098 (HP, detected m/z [C18H18O6N3P3F24 + H]+) for the positive 
mode, and 112.9855 (TFA(NH4), detected m/z [C2O2F3(NH4)-H]− ) and 
966.0007 (HP + FA, detected m/z [C18H18O6N3P3F24 + FA-H]− ) for the 
negative mode. 

Tandem mass spectrometry (MS/MS) was performed to facilitate the 
identification of significant metabolites, using the same LC-MS platform 
and the same chromatographic conditions as applied for the primary LC- 
MS analysis. The selected ions were targeted for fragmentation by 
collision-induced dissociation (CID) based on the previously determined 
accurate mass and retention time. Multiple collision energies (10 eV, 20 
eV, and 40 eV) were used. 

2.5. Data treatment and metabolite identification 

2.5.1. GC–MS 
The quality of the total ion chromatograms (TIC) for all analyzed 

samples, QCs, and blanks was assessed using Agilent MassHunter 
Quantitative Analysis software, version B.07.00. After checking the 
reproducibility of the signals of the internal standards (4-chlorophenol 
for derivatization and tricosane for analytical performance), all the 
samples were accepted. The raw data files were imported into the Agi-
lent Mas-sHunter Unknowns Analysis software (version B.09.00) for 
deconvolution and identification of the compounds using targeted li-
braries (Fiehn library version 2013, and the in-house CEMBIO spectral 
library for plasma samples). The compounds were identified based on 
their retention time (RT) and mass spectra. Additionally, the identified 
compounds and the non-identified features were reevaluated using the 
NIST library (National Institute of Standards and Technology, library 2.2 
version 2014). Obtained data was aligned with the Agilent MassProfiler 
Professional software (version 13.0) and exported into Agilent Mass-
Hunter Quantitative Analysis (version B.09.00) for peak integration. The 
abundance of each compound in the obtained data matrix was 
normalized according to the tricosane (internal standard) abundance, 
and the blank subtraction was performed prior to statistical analysis. 

2.5.2. LC-MS 
The quality of the analysis was assessed using Agilent MassHunter 

Quantitative Analysis software, version B.07.00. by inspecting total ion 
chromatograms (TIC), checking the pressure curves in order to assess the 
stability of chromatographic conditions, and reviewing the stability of 
the reference masses’ signal for each sample, QCs and blanks. All the 
samples have passed all the check points. Afterwards, the raw data were 
imported into Agilent MassHunter Profinder software (version B.08.00) 
for deconvolution. The Molecular Feature Extraction (MFE) algorithm 
was used for deconvolution, creating a list of possible molecular features 
that matches a Gaussian distribution of coeluting ions related by charge- 
state, isotopic distribution and/or the presence of different adducts, and 
dimmers. A second deconvolution step was performed by the Recursive 
Feature Extraction (RFE) algorithm, which reintegrates MFE results 
improving the quality of the final features list. The obtained list of sta-
tistically significant accurate masses was annotated using the CEU Mass 
Mediator search tool (Gil de la Fuente et al., 2018), with maximum error 
mass ± 20 ppm, in order to assign possible (tentative) metabolite can-
didates. Compounds were identified using the accurate mass and by 
checking their isotopic pattern. Only the features with the highest score 
were kept for further identity confirmation by LC-MS/MS. The biolog-
ical role of each compound was also evaluated in order to exclude the 
unrelated and impossible identification matches. The LC-MS/MS was 
performed only for the statistically significant and annotated features in 
both positive and negative ionization mode. The final identification of 
these compounds was performed by matching their fragmentation 
spectra with the reference spectra in curated databases such as HMDB 
(Wishart et al., 2018), METLIN (Smith et al., 2005), KEGG (Kanehisa and 
Goto, 2000), and LipidMaps (Fahy et al., 2007). For compound identi-
fication we considered proper retention time, accurate mass (maximum 
error mass ± 20 ppm), and at least two MS/MS fragments. 

2.6. Statistical analysis 

Before the statistical analysis, the raw data obtained by both GC–MS 
and LC-MS were filtered based on the proposed criteria (Godzien et al., 
2015). The variables were retained if they were present in ≥80% of the 
QCs (with relative standard deviation (RSD) <30% in QC samples), or if 
they were present in <20% of the QCs, but also present in ≥50% of the 
samples in a specific subject group. In order to correct for the possible 
intra-batch effect, we used the Quality Control-Robust Spline Correction 
(QC-RSC) algorithm (Kuligowski et al., 2015). Support vector regression 
(QC-RSC) was performed using MATLAB (7.10.0.499, MathWorks, 
Natick, MA, USA) and the LIBSVM library (Chang and Lin, 2011). After 
eliminating intra-batch effects, data was normalized in order to decrease 
the unwanted variations which may result from the errors in the sample 
preparation (De Livera et al., 2012). Auto scaling (Unit Variance, UV) 
was used to normalize and scale metabolic signals (Gromski et al., 
2015). In case of GC–MS data, the abundance of detected compounds 
was additionally normalized by the signal of internal standard (trico-
sane) in each sample. The missing values in our data sets were replaced 
with zeros (Armitage et al., 2015). 

For multivariate statistical analyses the SIMCA-P+ software (version 
15.0.2.5959, Umetrics, Umea, Sweden) was used. This includes building 
up Principal Component Analysis (PCA) models, Partial Least Squares- 
Discriminant Analysis (PLS-DA) and Orthogonal PLS-DA (OPLS-DA) 
models. Based on OPLS-DA models, volcano plots plotting variable 
importance in the projection (VIP) against corrected p-values [p(corr), 
loading values scaled as correlation coefficients values] were obtained. 
Univariate statistical analyses were done using MATLAB (7.10.0.499, 
MathWorks, Natick, MA, USA). The normal distribution was evaluated 
using the Kolmogorov-Smirnov test. The comparison of metabolite 
abundances between specific groups (AD vs. healthy controls, MCI vs. 
healthy controls, and AD vs. MCI) was done using Student’s t-test or 
Mann-Whitney U test, depending on data distribution, followed by 
Benjamini-Hochberg (FDR, false discovery rate) post hoc correction for 
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multiple comparisons. Changes in the levels of metabolites with p ≤
0.050 (Benjamini-Hochberg adjusted p-value obtained with univariate 
statistical analysis), VIP > 1.00, and absolute p(corr) ≥ 0.30 were 
considered significant. The percentage of change (%Δ) was calculated as 
follows: [(average value in the CASE group - average value in the 
CONTROL group)/(average value in CONTROL group)] × 100, with 
positive values indicating increased abundance and negative values 
decreased abundance of specific metabolites in the CASE group, when 
compared to the CONTROL group. 

Demographic and clinical characteristics of the participants deviated 
from the normal distribution (tested with the Kolmogorov-Smirnov 
test); therefore, the non-parametric Kruskal-Wallis ANOVA by ranks, 
with Dunn’s multiple post-hoc comparisons test, was used to compare 
the subject groups. The relationship of significantly altered metabolites 
with age, BMI, and blood glucose levels was evaluated using partial 
correlation, whilst controlling for the possible effect of diagnosis. To 
additionally evaluate the effect of age on altered compounds, a multi-
linear regression model was performed, with the level of specific me-
tabolites as dependent variables. The first block of multilinear regression 
included only age as an independent variable, while the second block 
included both age and diagnosis as independent variables. 

Metabolic pathway analysis was conducted using a freely accessible 
web-based metabolomics analysis platform MetaboAnalyst 5.0 
(https://www.metaboanalyst.ca/, accessed on 20 April 2023). Metab-
oAnalyst 5.0 was used to identify and visualize the affected metabolic 
pathways (Pang et al., 2021). 

The sample size was determined using the tool G*Power 3.1.9.2 
(Faul et al., 2007). To achieve a power of 80%, with fixed α = 0.05 and 
effect size d = 0.5, in the case of determining differences in two inde-
pendent means, the total sample size needed is 34, so we decided to use 
groups with 40 participants in each group. 

3. Results 

3.1. Participants 

The study included a total of 120 male participants subdivided into 
three groups; healthy control subjects (N = 40), subjects with MCI (N =
40) and subjects diagnosed with AD (n = 40). Different demographic and 
clinical characteristics of the participants are shown in Table 1. Since all 
examined demographic and clinical parameters deviated from the 
normal distribution, the non-parametric Kruskal-Wallis ANOVA by 
ranks, with Dunn’s multiple post-hoc comparisons test, was used to 
compare different subject groups (Table 1). 

Subjects differed significantly (Table 1) in age (p < 0.001), BMI (p <
0.001), blood glucose level (p = 0.008), and, as expected, cognitive 
abilities assessed with MMSE (p < 0.001). Namely, the patients with AD 
were significantly older than MCI subjects (p = 0.003; Dunn’s post-hoc 
test) and healthy controls (p < 0.001; Dunn’s post-hoc test), and par-
ticipants diagnosed with MCI were older than healthy subjects (p <
0.001; Dunn’s post-hoc test). The difference in BMI is the result of 
significantly lower BMI in AD (p < 0.001; Dunn’s post-hoc test) and MCI 
(p < 0.001; Dunn’s post-hoc test) subjects compared to healthy controls 
(Table 1). Blood glucose level was similar in MCI and healthy control 
group, and in AD patients and MCI subjects. However, participants 
diagnosed with AD had significantly higher blood glucose level than 
healthy subjects (p = 0.006; Dunn’s post-hoc test). As expected, AD 
patients had significantly lower MMSE score compared to subjects with 
MCI (p < 0.001; Dunn’s post-hoc test) and healthy controls (p < 0.001; 
Dunn’s post-hoc test). In addition, individuals with MCI had more pro-
nounced cognitive impairment than healthy subjects (p < 0.001; Dunn’s 
post-hoc test). Subjects had similar total cholesterol level (p = 0.051), 
HDL- (p = 0.090) and LDL-cholesterol (p = 0.311) concentration, as well 
as triglyceride levels (p = 0.176). 

3.2. Metabolomic profiling of plasma samples 

Multiplatform untargeted metabolomic analysis of plasma samples 
revealed diverse metabolic signatures in patients diagnosed with AD, 
subjects with MCI and healthy controls. In order to determine the dif-
ferences in metabolomic profiles of these subject groups, the PCA was 
used. Unsupervised PCA was used to generated the two-dimensional 
score plots in order to visualize the clustering of samples based on 
their similarity. PCA reduces the number of variables in a data set 
combining them into artificial variables called principal components, 
while preserving as much information as possible. The two first principal 
components describe the most variation in the dataset and they are used 
to visualize the general trends in the dataset using a PCA scatterplot. In 
our study PCA was performed for all three groups of samples (Fig. 2) and 
separately for all group comparisons, AD vs. healthy controls, MCI vs. 
healthy controls, and AD vs. MCI (Figs. 3-5). 

The PCA score plot for all sample groups showed the greatest sepa-
ration of data points between healthy controls and patients with AD, 
with data points corresponding to MCI subjects located between these 
two groups (Fig. 2). Smaller overlaps between data points corresponding 
to healthy controls and AD subjects indicate that these two groups differ 
more in the measured variables (Fig. 2). Larger overlaps between data 
points corresponding to MCI subjects and data points corresponding to 
healthy controls or subjects with AD indicate that the differences be-
tween these groups (healthy controls vs. MCI and MCI vs. AD) are less 
pronounced (Fig. 2). Tight clustering of the QC samples in all analysis 
validates the analytical performance and confirms that data normali-
zation corrected all potential instrumental variation, corroborating the 
biological differences between the clinical groups (Figs. 2-5). After PCA, 
PLS-DA model was generated for all subject groups, while supervised 
OPLS-DA models were generated to discriminate two separate groups of 
samples (AD vs. healthy controls, MCI vs. healthy controls, and AD vs. 
MCI), and the VIP scores were used to identify those metabolites that 
contributed the most to the differences between groups (Tables 2-3). All 
generated OPLS-DA models were built from one predictive component 
and two orthogonal components. 

Using the GC–MS analysis, a total of 88 signals was detected, while 
LC-MS analysis resulted in 761 features detected in the positive mode 
and 783 in the negative ionization mode. After normalization of raw 
data matrix, curation of the data, statistical analysis and metabolite 
identification, a total of 29 metabolites detected with GC–MS were 
significantly altered between AD patients, subjects with MCI and healthy 
controls (Table 2), while LC-MS analyses identified a total of 24 signif-
icantly altered metabolites (Table 3). 

Significantly altered metabolites, detected by GC–MS, are presented 
in Table 2. The list of metabolites whose abundance was found to be 
significantly different in healthy controls compared to subjects diag-
nosed with AD or MCI, and/or significantly different in AD patients in 
comparison to individuals with MCI, was determined using the combi-
nation of multivariate and univariate statistics (Table 2). Altered com-
pounds, detected by GC–MS, belong to benzene and substituted 
derivatives, carboxylic acids and derivatives, fatty acyls, hydroxy acids 
and derivatives, keto acids and derivatives, and organooxygen com-
pounds (Table 2). The abundance of benzoic acid was decreased in MCI 
subjects compared to healthy controls and patients with AD, while the 
level of hippuric acid seems to increase in MCI subjects when compared 
to healthy controls and AD patients. Therefore, these two compounds 
could have potential in MCI detection. Moreover, obtained results sug-
gest lower levels of different amino acids and their derivates (proline, 
valine, glycine, succinic acid, serine, threonine, pyroglutamic acid, 
glutamic acid) in AD patients in comparison to both healthy control 
subjects and MCI subjects (Table 1). The abundance of valine, succinic 
acid and glutamic acid was also reduced in MCI subjects compared to 
healthy controls, but, as mentioned before, increased in comparison to 
the patients with AD. Citric acid was found to be less abundant in both 
AD and MCI subject compared to healthy individuals; however, the level 
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Fig. 2. PCA and PLS-DA score plots of the untargeted metabolomics analysis of plasma samples from healthy control individuals (HC), patients diagnosed with AD 
and subjects with MCI. 
Plots were obtained using SIMCA-P+ software (version 15.0.2.5959, Umetrics, Umea, Sweden). The data matrix was pretreated using log-transformation and unit 
variance (UV) scaling method. (A) PCA score plot for the GC–MS analysis (R2X(cum) = 0.753); (B) PCA score plot for the LC-MS ESI (+) analysis (R2X(cum) =
0.751); (C) PCA score plot for the LC-MS ESI (− ) analysis (R2X(cum) = 0.368); (D) PLS-DA score plot for the GC–MS analysis (R2 = 0.612; Q2 = 0.509); (E) PCA score 
plot for the LC-MS ESI (+) analysis (R2 = 0.474; Q2 = 0.408); (F) PLS-DA score plot for the LC-MS ESI (− ) analysis (R2 = 0.470; Q2 = 0.285); QC = quality control. 

Fig. 3. PCA and OPLS-DA score plots of the untargeted metabolomics GC–MS analysis of plasma samples from healthy control individuals (HC), patients diagnosed 
with AD subjects with MCI. 
Plots were obtained using SIMCA-P+ software (version 15.0.2.5959, Umetrics, Umea, Sweden). The data matrix was pretreated using log-transformation and unit 
variance (UV) scaling method. (A) PCA score plot for AD and HC subject groups (R2X(cum) = 0.753); (B) PCA score plot for MCI and HC subject groups (R2X(cum) =
0.747); (C) PCA score plot for AD and MCI subject groups (R2X(cum) = 0.791); (D) OPLS-DA score plot for AD and HC subject groups (R2 = 0.934; Q2 = 0.869); (E) 
OPLS-DA score plot for MCI and HC subject groups (R2 = 0.884; Q2 = 0.851); (F) OPLS-DA score plot for AD and MCI subject groups (R2 = 0.600; Q2 = 0.335); QC 
= quality control. 
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of this metabolite did not differ between AD and MCI group. Glycolic 
acid, 3-hydroxypropanoic acid, and malic acid were lower in AD pa-
tients compared to MCI subjects, and malic acid was suggested to 
decrease with the progression of cognitive decline (from healthy con-
trols through MCI subjects to AD patients). 2-Ketoisocaproic acid was 
decreased in both MCI and AD subjects in comparison to healthy in-
dividuals; however, the abundance of this compound could not be 
associated with the diagnosis of either AD or MCI, since there was no 
difference in the representation of this metabolite between these two 
groups. 

Different organooxygen compounds, including glyceric acid, fructose 
and glucosaminic acid, showed lower levels in patients with AD, 
compared to both healthy controls and subjects with MCI. In the case of 
fructose, the abundance was also reduced in MCI subjects in comparison 
to healthy controls, with the abundance additionally decreasing towards 
AD diagnosis. The level of maltose and isomaltose was higher in AD 
patients and MCI subjects then in healthy control group. However, the 
abundance of these two disaccharides was lower in the subjects with AD, 
compared to individuals with MCI. 

Significantly altered and identified metabolites, detected by LC-MS 
in both positive and negative ionization mode, are presented in 
Table 3. The list of metabolites, with the abundance significantly 
different in healthy controls compared to subjects diagnosed with AD or 
MCI, and/or significantly different in AD patients in comparison to in-
dividuals with MCI, was determined using the combination of multi-
variate and univariate statistics (Table 3). Most compounds detected by 
the LC-MS/MS approach, which were altered between the three groups 
of subjects included in this study, have been identified as different fatty 
acyls, glycerolipids and glycerophospholipids (Table 3). All of these 
compounds were decreased in AD patients and subjects with MCI 
compared to healthy controls. Other fatty acyls, glycerolipids and 
glycerophospholipids were significantly altered between subjects with 

AD or MCI and healthy individuals, however, their levels do not 
differentiate between AD and MCI group. Biliverdin was significantly 
increased, and bilirubin was significantly decreased, in subjects with 
cognitive impairments (AD and MCI group), compared to healthy con-
trols (Table 3). Dehydroepiandrosterone sulfate (DHEAS), a multifunc-
tional steroid produced mainly in the adrenal cortex, was less abundant 
in AD and MCI subjects in comparison to healthy individuals, but no 
difference was detected between subjects diagnosed with AD and the 
ones with MCI (Table 3). 

Since subjects differed significantly in age, BMI and blood glucose 
concentration (Table 1), the parameters that could be associated with 
the abundance of specific metabolites, we wanted to rule out these 
variables as the main cause of the difference in the representation of 
individual metabolites between the examined groups. In order to test for 
the influence of age, BMI, and blood glucose levels on the abundance of 
different compounds in the plasma samples of the subjects, a correlation 
analysis was used, whilst controlling for the possible effect of diagnosis 
(Supplementary materials, Table S1). The partial correlation revealed no 
association between the level of individual metabolites and BMI or blood 
glucose concentration. In the case of age, the significant correlation was 
detected between age and the levels of pyroglutamic, glycolic, 3-hydrox-
ypropanoic, malic and glucosaminic acid (Supplementary materials, 
Table S1). In order to determine the size of the effect of age on pyro-
glutamic, glycolic, 3-hydroxypropanoic, malic and glucosaminic acid 
levels, a multilinear regression model was performed (Supplementary 
materials, Table S2), with the concentration of individual metabolites as 
dependent variables, and with age and diagnosis as independent vari-
ables. The regression model demonstrated that age alone significantly 
affected only the concentration of malic acid. However, with the pres-
ence of diagnosis, as an additional independent variable, the predictive 
power of the model significantly increased (Supplementary materials, 
Table S2). Therefore, we can conclude that these multilinear regression 

Fig. 4. PCA and OPLS-DA score plots of the untargeted metabolomics LC-MS ESI (+) analysis of plasma samples from healthy control individuals (HC), patients 
diagnosed with AD and subjects with MCI. 
Plots were obtained using SIMCA-P+ software (version 15.0.2.5959, Umetrics, Umea, Sweden). The data matrix was pretreated using log-transformation and unit 
variance (UV) scaling method. (A) PCA score plot for AD and HC subject groups (R2X(cum) = 0.742); (B) PCA score plot for MCI and HC subject groups (R2X(cum) =
0.654); (C) PCA score plot for AD and MCI subject groups (R2X(cum) = 0.672); (D) OPLS-DA score plot for AD and HC subject groups (R2 = 0.963; Q2 = 0.927); (E) 
OPLS-DA score plot for MCI and HC subject groups (R2 = 0.924; Q2 = 0.792); (F) OPLS-DA score plot for AD and MCI subject groups (R2 = 0.971; Q2 = 0.691); QC 
= quality control. 
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models demonstrated that the alternations in the level of pyroglutamic, 
glycolic, 3-hydroxypropanoic, malic and glucosaminic acid, are mainly 
due to diagnosis. 

Our data revealed several significantly perturbed pathways, 
including aminoacyl-tRNA biosynthesis, glyoxylate and dicarboxylate 
metabolism, glycine, serine and threonine metabolism, porphyrin and 
butanoate metabolism, citrate cycle, glutathione metabolism, alanine, 
aspartate and glutamate metabolism, and arginine and proline meta-
bolism (Supplementary materials, Fig. S1). A total of 15 distinct me-
tabolites were identified from these pathways, including glycine, serine, 
methionine, valine, threonine, proline, glutamic acid, citric acid, malic 
acid, glyceric acid, biliverdin, bilirubin, acetoacetate, succinic acid, and 
hydroxyproline. 

4. Discussion 

The clinical diagnosis of AD is currently based on structured in-
terviews with patients and their caregivers, accompanied by neuropsy-
chological examinations combined with neuroimaging methods, all in 
order to rule out other potential causes of cognitive disfunction. How-
ever, the clinical diagnostic accuracy for AD is still not satisfying, 
especially during early stages of the disease when symptoms are similar 
to cognitive decline associated with normal aging (Porsteinsson et al., 
2021). To approach this problem, we need biomarkers in clinical prac-
tice that would help the early and accurate detection of AD symptoms. 
For some time now, MCI has been considered as a prodromal phase of 
AD with the best predisposition for, more or less effective, pharmaceu-
tical intervention. The diagnosis and treatment of AD is further 
complicated by the lack of reliable biomarkers that could help differ-
entiate AD subjects from subjects in the prodromal stage of the disease. 
Blood-based biomarkers, unlike cerebrospinal fluid (CSF) biomarkers, 
have not yet entered the clinical practice, however, they have been 

widely explored due to their testing possibilities and fewer drawbacks 
compared to CSF. CSF sampling requires lumbar puncture which is an 
invasive method and not a routine clinical practice everywhere, while 
imaging methods are still very expensive and not widely available. 
Recently, convincing evidence has emerged supporting the use of 
plasma biomarkers (i.e., Aβ and phosphorylated tau) in clinical practice 
(Sabbagh et al., 2017). This step paves the way also for other 
blood-based biomarkers which could contribute to an earlier and/or 
more accurate diagnosis of AD. Metabolomic investigations give us the 
opportunity to find altered metabolites that could help better define the 
pathophysiology of the disease and search for circulating metabolites 
that might have the potential to aid AD diagnosis, evaluation of disease 
prognosis and the development of new therapeutic strategies. The aim of 
this study was to screen for metabolite signatures of AD pathology and to 
potentially identify new, easily accessible and cost-effective blood-based 
biomarkers for more accurate diagnosis of AD. Nevertheless, we have to 
bear in mind one of the main challenges in metabolomics studies, their 
limitation in associating metabolic changes in the periphery with those 
in the brain. Parallel targeted metabolomics study of both brain tissue 
and blood samples however identified a panel of sphingolipids whose 
concentrations in brain tissue were associated with severity of AD pa-
thology and, in blood samples, with the progression of the disease, thus 
linking the alterations in metabolite signals in the brain tissue to those at 
the periphery (Varma et al., 2018). 

In this study, the metabolomic profiling of the plasma samples ob-
tained from AD patients, MCI subjects and healthy controls, was per-
formed using the combined GC–MS and LC-MS approach. Using GC–MS 
approach we detected 88 compounds, among which significantly altered 
compounds belonged to the class of amino acids and their derivatives, 
fatty acids and organooxygen compounds. Using LC-MS ESI approach, in 
both positive and negative ionization mode, we identified 24 signifi-
cantly altered metabolites from the classes of fatty acyls, glycerolipids, 

Fig. 5. PCA and OPLS-DA score plots of the untargeted metabolomics LC-MS ESI (− ) analysis of plasma samples from healthy control individuals (HC), patients 
diagnosed with AD and subjects with MCI. 
Plots were obtained using SIMCA-P+ software (version 15.0.2.5959, Umetrics, Umea, Sweden). The data matrix was pretreated using log-transformation and unit 
variance (UV) scaling method. (A) PCA score plot for AD and HC subject groups (R2X(cum) = 0.734); (B) PCA score plot for MCI and HC subject groups (R2X(cum) =
0.727); (C) PCA score plot for AD and MCI subject groups (R2X(cum) = 0.718); (D) OPLS-DA score plot for AD and HC subject groups (R2 = 0.969; Q2 = 0.809); (E) 
OPLS-DA score plot for MCI and HC subject groups (R2 = 0.966; Q2 = 0.776); (F) OPLS-DA score plot for AD and MCI subject groups (R2 = 0.656; Q2 = 0.307); QC 
= quality controls. 
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glycerophospholipids and sterol lipids. 
One of the most consistent findings throughout AD metabolomic 

studies is the alteration of the amino acid metabolism. Amino acids are 
essential substrates and play an important role in regulation of many 
metabolic pathways, including aminoacyl-tRNA biosynthesis which is 
an essential process in protein synthesis (Wang et al., 2014a, 2014b, 
2014c). Amino acids are precursors for various metabolites and lipids, 
important players in gene expression regulation and cell signaling (Wu, 
2009). In the central nervous system, amino acids, including glutamic 
acid, γ-aminobutyric acid, aspartic acid, and glycine, are known to have 
an important role in neurotransmission (Dalangin et al., 2020). Many 
studies have reported altered amino acid levels in serum and brain of AD 
patients and AD animal models, but it remains unknown whether these 
changes really contribute to AD pathogenesis. The metabolic pathway 
analysis suggested that metabolic deregulations involved in AD patho-
genesis, in both human AD patients and mouse models of AD, were 
significantly associated with associated with alanine, aspartate, purine, 
arginine, proline, and glutamate metabolism (Yin et al., 2023). Metab-
olomic studies which used the cerebrospinal fluid (CSF) samples from 
patients with AD have reported a diverse spectrum of altered metabo-
lites, including arginine, valine, proline, serine, histidine, choline, cre-
atine, and carnitine (Ibáñez et al., 2012). Additionally, perturbations in 

methionine, tryptophan, and tyrosine metabolic pathways have been 
observed, indicating their potential utility as viable biomarkers for 
diagnosis of AD (Griffin and Bradshaw, 2017; Kaddurah-Daouk et al., 
2013). In present study, decreased levels of different amino acids and 
their derivates (proline, valine, glycine, succinic acid, serine, threonine, 
pyroglutamic, and glutamic acid) were observed in AD patients 
compared to both healthy controls and MCI group. Branched-chain 
amino acids (BCAA), namely valine, isoleucine and leucine, are essen-
tial amino acids involved in the protein synthesis and findings suggests 
that BCAA play a role in the brain functioning (Fernstrom, 2005). In 
accordance with our findings, lower plasma levels of valine were found 
to correlate with accelerated cognitive decline (González-Domínguez 
et al., 2015; Toledo et al., 2017). We have observed reduced levels of 
leucine metabolite, 2-ketoisocaproic acid, in both AD and MCI subjects 
compared to heathy controls. In contrast with these findings, Siddik and 
colleagues showed that levels of valine, isoleucine and leucine metab-
olites, as well as their keto- derivatives, such as ketoisocaproate, were 
significantly higher in AD patients in comparison to healthy controls 
(Siddik et al., 2022). Furthermore, alterations in glutamatergic neuro-
transmission have been associated with cognitive disorders, such as AD 
(Francis et al., 1993), ischemic brain damage (Bruno et al., 2001) and 
motor neuron disease (Gadea and López-Colomé, 2001). Glutamate 

Table 2 
List of significantly altered compounds, detected by GC–MS analysis, between healthy controls, MCI subjects and AD patients.  

Compound RT AD vs. HC MCI vs. HC AD vs. MCI 

pBH VIP % Δ pBH VIP % Δ pBH VIP % Δ 

Benzene and substituted derivatives 
Benzoic acid 9.55 NS <1.00 6.6 1.32 × 10− 4 1.03 − 27.2 4.46 × 10− 4 <1.00 46.4 
Hippuric acid 16.91 NS <1.00 3.8 7.99 × 10− 5 1.45 19.2 7.97 × 10− 4 1.53 − 12.9  

Carboxylic acids and derivatives 
Alanine 7.43 NS <1.00 − 17.7 NS <1.00 4.4 3.26 × 10− 2 1.00 − 21.1 
Proline 8.59 8.86 × 10− 3 1.05 − 30.0 NS <1.00 − 16.3 4.49 × 10− 2 1.08 − 16.4 
Valine 9.05 3.82 × 10− 4 1.00 − 23.8 2.91 × 10− 2 1.03 − 16.1 NS <1.00 − 9.1 
Glycine 10.32 1.43 × 10− 4 1.30 − 35.7 NS <1.00 9.1 2.02 × 10− 5 1.63 − 41.0 
Succinic acid 10.42 6.16 × 10− 12 1.75 − 45.3 2.50 × 10− 6 1.65 − 30.8 1.42 × 10− 3 1.43 − 20.9 
Serine 11.04 7.32 × 10− 3 <1.00 − 20.3 NS <1.00 − 0.9 3.26 × 10− 2 1.20 − 19.6 
Threonine 11.37 9.30 × 10− 4 1.03 − 25.7 NS <1.00 − 2.8 1.89 × 10− 3 1.34 − 23.5 
2-Aminomalonic acid 12.48 NS <1.00 − 6.6 NS <1.00 23.0 1.25 × 10− 2 1.35 − 24.1 
Methionine 13.11 NS <1.00 − 8.0 NS <1.00 11.9 2.24 × 10− 2 1.02 − 17.7 
Pyroglutamic acid 13.14 3.24 × 10− 3 1.00 − 21.4 NS <1.00 5.2 3.49 × 10− 4 1.59 − 25.3 
4-Hydroxy-proline 13.18 NS <1.00 − 9.4 NS <1.00 34.4 1.72 × 10− 2 1.06 − 32.5 
Glutamic acid 13.28 1.35 × 10− 9 1.73 − 63.3 3.61 × 10− 7 1.72 − 55.1 1.72 × 10− 2 <1.00 − 18.3 
Citric acid 16.52 1.14 × 10− 2 1.09 − 10.9 4.91 × 10− 2 1.17 − 4.0 NS <1.00 − 7.2  

Fatty Acyls 
Nonanoic acid 11.08 NS <1.00 − 20.3 4.04 × 10− 5 1.36 − 41.3 NS <1.00 35.8 
Citramalic acid 12.51 2.39 × 10− 2 <1.00 − 3.8 NS 1.30 14.6 4.46 × 10− 4 1.08 − 16.1  

Hydroxy acids and derivatives 
Glycolic acid 7.03 9.75 × 10− 8 1.53 − 26.8 NS 1.07 1.4 2.00 × 10− 8 1.99 − 27.8 
3-Hydroxypropanoic acid 8.02 6.59 × 10− 7 1.49 − 25.5 NS 1.11 0.4 1.62 × 10− 5 1.83 − 25.8 
Malic acid 12.69 1.36 × 10− 10 1.71 − 42.8 1.16 × 10− 3 1.50 − 20.7 2.00 × 10− 5 1.66 − 27.8  

Keto acids and derivatives 
Acetoacetate 7.86 4.56 × 10− 4 1.14 75.1 6.65 × 10− 4 <1.00 76.4 NS <1.00 − 0.7 
2-Ketoisocaproic acid 9.00 2.58 × 10− 3 1.11 − 26.3 1.32 × 10− 3 1.38 − 28.1 NS <1.00 2.5  

Organooxygen compounds 
Glyceric acid 10.63 1.14 × 10− 12 1.83 − 40.5 NS 1.11 − 8.6 2.00 × 10− 8 2.04 − 34.9 
Arabinose 14.78 NS 1.01 − 3.1 NS 1.32 6.9 2.29 × 10− 2 1.19 − 9.4 
Fructose 17.05 1.03 × 10− 4 1.12 − 38.5 4.91 × 10− 2 1.09 − 32.9 1.50 × 10− 2 1.14 − 8.4 
Glucose 17.34 NS 1.03 − 3.8 NS 1.18 1.0 3.02 × 10− 2 1.02 − 4.8 
Glucosaminic acid 18.37 9.05 × 10− 6 1.46 − 26.7 NS 1.04 − 0.4 2.00 × 10− 5 1.91 − 26.4 
Maltose 24.60 4.33 × 10− 7 1.55 36.5 1.86 × 10− 9 2.02 52.2 4.60 × 10− 2 1.11 − 10.3 
Isomaltose 25.55 1.00 × 10− 2 1.18 12.1 1.10 × 10− 6 1.85 24.8 1.10 × 10− 2 1.19 − 10.2 

%Δ, percentage of change; AD, Alzheimer’s disease; HC, healthy controls; MCI, mild cognitive impairment; pBH, Benjamini-Hochberg adjusted p-value; RT, retention 
time in minutes; VIP, variable importance in the projection. 
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plays a prominent role in intermediary metabolism in all organs and 
tissues, linking carbohydrate and amino acid metabolism via tricar-
boxylic acid (TCA) cycle (Schousboe et al., 2014). Changes of glutamate 
and glutamine levels in AD may reflect altered neurotransmission and 
glutamate excitotoxicity, which involvement has been suggested in AD 
pathogenesis. Few studies reporting decreased levels of glutamate in AD 
and MCI subjects are in line with our results (Kim et al., 2019; Wang 
et al., 2014c). In addition, alternations in other key molecules of 
tricarboxylic acid (TCA) cycle and carbohydrate metabolism were 
observed in AD individuals through various metabolomic studies (Dong 
and Brewer, 2019; Van Der Velpen et al., 2019). In present study, a 
progressive reduction of key metabolites within the TCA cycle, namely 
succinic, citric, and malic acids, was observed starting from healthy 
controls, individuals with MCI, to the patients with AD. Consistent with 
our findings, similar metabolomic studies conducted on plasma samples 
have documented significant reductions in these metabolites, including 
2-butanedioic and fumaric acid, in both AD and MCI subjects (Wang 
et al., 2014c). In a metabolomic study involving a mouse AD model, a 
significant decline in fumaric, citric, and malic acids was observed 
during aging (Wang et al., 2014a). Carbohydrate metabolism has been 
also altered in AD, with several studies reporting reduced glucose uti-
lization, particularly in the hippocampus and posterior cingulate, during 
early stages of AD (Ferrari et al., 2019; Protas et al., 2013). This decline 
in glucose metabolism may contribute to the synaptic dysfunction and 
neuronal loss observed in AD (Sanabria-Diaz et al., 2013; Shivamurthy 
et al., 2015). Our results also indicated altered levels of metabolites that 
are directly or indirectly involved in the glycolytic pathway, including 
fructose, maltose, glyceric, and glucosaminic acid. The observed alter-
ations in both metabolic pathways, glycolysis and TCA cycle, imply 
disrupted energy homeostasis in AD patients. These alterations seem to 

be reflected in both plasma and CSF samples of AD patients, suggesting 
their systemic origin (Van Der Velpen et al., 2019). 

Benzoic acid is generally produced by gut microbial metabolic 
pathway ingestion of plant-based food that is rich with polyphenolic 
compounds (Ticinesi et al., 2023). Hippuric acid is a metabolite derived 
from the degradation of (poly)phenols and aromatic amino acids by gut 
microbiota, formed by the conjugation of benzoic acid with glycine and 
excreted in urine (Palau-Rodriguez et al., 2015). There are several 
metabolomic studies proposing hippuric acid as a biomarker of aging, 
since reduced levels of hippuric acid were found in the blood and urine 
samples of older participants with age-related diseases and cognitive 
impairment (Kameda et al., 2020; Saoi et al., 2019; Yilmaz et al., 2020). 
In the study conducted by Yilmaz and colleagues, excretion of hippuric 
acid was significantly reduced in MCI, but there was no difference be-
tween controls and patients with dementia (Yilmaz et al., 2020). In our 
study, we have detected decreased abundance of benzoic acid in MCI 
subjects in comparison to healthy controls, whereas the level of hippuric 
acid appeared to increase in individuals with MCI when compared to 
healthy controls and AD patients. Moreover, Trushina and colleagues 
identified several metabolites, including hippuric acid, that were 
elevated in the plasma of MCI subjects in comparison to controls 
(Trushina et al., 2013). Hence, the hippuric acid could be potentially 
considered as one of the metabolites for MCI detection. 

Altered lipid metabolism and disturbance in the brain lipid levels are 
strongly associated with AD and age-associated cognitive decline (Ooi 
et al., 2021). Fatty acids, present at very high levels in neurons, are 
bioactive molecules, playing a vital role in the cell structure and signal 
transduction (Graber et al., 1994). In our study, we observed decreased 
levels of one of the metabolites of linoleic acid, 9-hydroxyoctadecadie-
noic acid (9-HODE), in AD patients in comparison to MCI subjects. In 

Table 3 
Significantly altered metabolites, detected by LC-MS ESI, between patients diagnosed with AD, subjects with MCI, and healthy controls.  

Compound Mass RT ESI AD vs. HC MCI vs. HC AD vs. MCI 

pBH VIP % Δ pBH VIP % Δ pBH VIP % Δ 

Fatty acyls 
9-HODE 296.2346 18.71 − 1.14 × 10− 4 1.30 − 87.1% 6.69 × 10− 6 2.04 − 96.2% NS 0.62 240.4% 
Eicosatetraenoic acid 304.2418 27.83 + 2.08 × 10− 2 0.66 − 20.8% 6.80 × 10− 3 1.33 − 30.7% NS 0.93 14.2% 
Dodecenoic acid 180.1493 29.91 + 6.35 × 10− 3 0.98 − 32.4% 1.43 × 10− 2 1.39 − 34.3% NS 0.68 3.0%  

Glycerolipids 
MG(16:0/0:0/0:0) 330.2748 28.23 + 2.77 × 10− 4 0.61 − 29.1% 2.26 × 10− 5 1.67 − 39.6% NS 0.98 17.4% 
MG(0:0/18:1/0:0) 356.2918 28.93 + 9.02 × 10− 5 1.14 − 47.9% 4.90 × 10− 6 1.71 − 53.6% NS 0.70 12.1% 
MG(18:2/0:0/0:0) 354.2747 25.74 + 1.04 × 10− 3 0.95 − 40.0% 6.68 × 10− 6 1.81 − 51.6% NS 0.86 24.0%  

Glycerophospholipids 
PC(O-12:0/2:0) 513.3052 14.45 − 7.00 × 10− 5 1.36 − 46.8% 4.54 × 10− 2 1.19 − 30.0% 6.89 × 10− 2 1.33 − 24.0% 
LysoPC(14:0/0:0) 513.3056 15.20 + 6.46 × 10− 5 1.37 − 48.4% 4.23 × 10− 2 1.21 − 31.4% 6.89 × 10− 2 1.38 − 24.8% 
LysoPC(15:0/0:0) 527.3211 16.42 − 6.46 × 10− 5 1.38 − 40.6% 3.09 × 10− 2 1.20 − 22.9% NS 1.46 − 22.9% 
LysoPC(16:1/0:0) 539.3212 16.81 − 6.33 × 10− 5 1.44 − 42.2% 4.80 × 10− 2 1.19 − 23.8% 6.89 × 10− 2 1.58 − 24.1% 
PC(14:0/O-1:0) 481.3170 17.15 + 1.41 × 10− 4 1.14 − 43.7% 2.96 × 10− 2 1.37 − 28.4% NS 1.26 − 21.4% 
PC(O-1:0/16:0) 509.3477 19.97 + 1.19 × 10− 4 1.17 − 43.4% 2.47 × 10− 2 1.30 − 29.7% NS 1.18 − 19.4% 
LysoPC(18:1/0:0) 567.3523 20.72 − 1.78 × 10− 6 1.59 − 52.9% 3.33 × 10− 4 1.77 − 43.0% NS 1.38 − 17.4% 
LysoPC(P-15:0/0:0) 465.3227 24.47 + 4.48 × 10− 5 1.14 − 42.4% 3.49 × 10− 3 1.46 − 31.5% NS 1.31 − 15.9% 
PC(O-16:0/3:0) 537.3799 25.72 + 9.72 × 10− 5 1.27 − 42.2% 1.61 × 10− 2 1.37 − 27.8% NS 1.29 − 20.0% 
PI(18:0/22:0) 958.6266 20.16 − 3.13 × 10− 5 1.36 − 47.8% 5.01 × 10− 3 1.41 − 33.3% 7.64 × 10− 2 1.01 − 21.7% 
LysoPE(18:1/0:0) 479.3002 20.51 − 1.01 × 10− 5 1.45 − 58.9% 2.49 × 10− 4 1.73 − 51.0% NS 0.82 − 16.2% 
LysoPE(18:0/0:0) 463.3051 21.09 − 9.24 × 10− 7 1.66 − 42.6% 5.83 × 10− 5 1.83 − 33.7% NS 1.17 − 13.4%  

Organoheterocyclic compounds 
Biliverdin 582.2455 13.26 + 3.40 × 10− 4 2.17 − 61.5% 4.85 × 10− 3 1.15 − 62.8% NS 0.71 3.4% 
Bilirubin 584.2641 34.16 + 3.55 × 10− 4 3.37 262.0% 4.93 × 10− 3 1.35 345.3% NS 0.62 − 18.7%  

Sterol Lipids 
Dehydroepiandrosterone sulfate 368.1651 7.27 − 6.04 × 10− 3 0.91 − 46.8% 9.43 × 10− 3 1.25 − 52.0% NS 0.17 10.7% 

%Δ, percentage of change; AD, Alzheimer’s disease; ESI, Electrospray ionization (the + sign indicates positive mode and the – sign negative ionization mode); HC, 
healthy controls; MCI, mild cognitive impairment; pBH, Benjamini-Hochberg adjusted p-value; RT, retention time in minutes; VIP, variable importance in the 
projection. 
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study conducted by Cunnane and colleagues, linoleic acid was decreased 
in AD patients and MCI, when compared to healthy individuals (Cun-
nane et al., 2012). Lower levels of linoleic acid were associated with an 
increase of a pro-inflammatory metabolite, arachidonic acid (Fonteh 
et al., 2020). Many other fatty acids were also altered in AD, such as 
oleic, palmitic, and stearic acid, and, one of the most abundant poly-
unsaturated fatty acid (PUFA) in the brain, docosahexaenoic acid (DHA) 
(Belkouch et al., 2016; Cunnane et al., 2012; Fonteh et al., 2020; 
Snowden et al., 2017). An increasing number of studies have reported 
the potential association between alterations in fatty acid levels and AD 
(Devore et al., 2009). Moreover, it has been shown that elevated levels of 
free fatty acids induce amyloid deposition and tau hyper-
phosphorylation (Wilson and Binder, 1997). Various studies analyzed 
the levels of fatty acids in the brain, plasma or serum of AD patients, but 
with contradictory results (Cunnane et al., 2012; Fraser et al., 2010; 
Wang et al., 2012). The alterations of fatty acid metabolism in the pe-
ripheral blood of AD patients could reflect the abnormal fatty acids 
metabolism in the brain tissue, associated with altered synaptic function 
and neuroinflammation, due to the ability of fatty acids to pass freely 
through the blood–brain barrier. Therefore, the monitoring of abnormal 
fatty acids metabolism at the periphery could be of great significance in 
early diagnosis of AD. 

Glycerophospholipids are polar lipids, with main role in the trans-
portation, metabolic reactions, development, apoptosis and signal in-
duction and transmission (Akyol et al., 2021). Glycerophospholipids are 
divided in the subgroups of phosphatidylcholines (PC), phosphati-
dylserines (PS), phosphatidylethanolamines (PE), and phosphatidyli-
nositols (PI). Our results showed significantly decreased levels of 
different PCs, PEs and PI(18:0/22:0) in AD patients and MCI subjects 
compared to the healthy controls. Out of all detected glycer-
ophospholipids, PC(O-12:0/2:0), LysoPC(14:0/0:0), LysoPC(16:1/0:0), 
and PI(18:0/22:0) could possibly have prognostic value, since their 
levels are decreasing from healthy controls to MCI subjects and finally to 
AD patients. A decrease in PCs and lysoPCs levels in patients with AD has 
been previously reported (González-Domínguez et al., 2015; Mapstone 
et al., 2014; Whiley et al., 2014). The reduced levels of PCs might be 
linked with the aberrant activity of phospoholipase A2 (PLA2), enzyme 
involved in cleavage of fatty acids, producing free fatty acids and 
LysoPCs (Burke and Dennis, 2009). The activity of this enzyme appears 
to be increased in the presence of β-amyloid peptide, the major 
component of the amyloid plaques and one of the main hallmarks of AD 
(Hicks et al., 2008). In our study we observed altered levels of LysoPCs in 
plasma of AD patients, which is in line with other studies focused on 
plasma (González-Domínguez et al., 2014; Li et al., 2010) and CSF 
(Mulder et al., 2003) samples, while Grimm et al. reported partial in-
crease of LysoPCs levels in postmortem AD brains (Grimm et al., 2011). 
Reason for these discrepancies is that LysoPCs are not only intermediates 
in glycerophospholipid metabolism, but they are also involved in the 
multiple neuronal pathways (Frisardi et al., 2011). 

Glycerolipids can be categorized into triacylglycerols (TG), mono-
acylglycerol (MG), and diacylglycerol (DAG), based on the number of 
acyl groups in the structure. It appears that TG levels were not altered in 
the plasma of AD patients (Proitsi et al., 2017), however, levels of both 
MG and DG were elevated in both prefrontal cortex and plasma of AD 
and MCI subjects, suggesting change in the glycerolipid metabolism as 
an early event in AD (Chan et al., 2012; Wood et al., 2015b). In addition, 
one study demonstrated increased MG and DG levels in the gray matter 
of MCI and AD patients, indicating that these changes may play a role in 
the development of MCI, as well as transition from MCI to AD (Wood 
et al., 2015a). However, we observed lower levels of MG(0:0/18:1/0:0) 
in AD and MCI in comparison to control subjects, and no differences 
were detected between AD and MCI group. 

Steroid lipids are important components in the pathophysiology of 
AD and their role has been studied intensively, but metabolomic data are 
limited. Dehydroepiandrosterone (DHEA) and its sulphate (DHEAS) are 
neurosteroids, secreted mainly by the adrenal cortex, with role in a wide 

variety of physiological systems, and with the effect on the brain (Kro-
both et al., 1999), immune system (Chen and Parker, 2004), somatic 
growth and development (Arquitt et al., 1991). Levels of these steroids 
decrease with aging, suggesting association with a decrease in cognitive 
function, as well as the increased rates of neuronal degeneration and 
dysfunction that occur during aging (Berr et al., 1996). In our study, 
DHEAS was found to be less abundant in AD and MCI subjects compared 
to healthy individuals, but no differences were detected between sub-
jects diagnosed with AD or MCI. Many studies confirmed reduction in 
levels of DHEAS in the plasma of patients suffering from AD (Cho et al., 
2006; Genedani et al., 2004; Kalecký et al., 2022). However, there is 
inconsistence between circulating levels of steroid hormones and those 
reported in the brain, since several studies reported elevated levels in AD 
brain tissue (Brown et al., 2003; Marx et al., 2006). It has been proposed 
that increase in DHEA levels in the brain represents a response to an 
increased oxidative stress induced by the presence of amyloid peptides 
in AD (Cardounel et al., 1999). It is hypothesized that DHEA is seques-
tered away in the brain of AD patients, resulting in the further decrease 
of DHEA levels in circulation (Aldred and Mecocci, 2010). Oxidative 
stress contributes to the AD pathophysiology by causing mitochondrial 
dysfunction, accumulation of reactive oxygen species (ROS) and 
consequently upregulation of p-tau and Aβ synthesis (Cassidy et al., 
2020; Konjevod et al., 2021). One of the antioxidants that acts as 
scavenger of ROS in brain, bilirubin, was found to be decreased in the 
plasma of patients with AD and MCI, while biliverdin, used for con-
version to bilirubin, was significantly increased. However, metabolomic 
study of Trushina et al. reported reduction in the plasma and CSF levels 
of both bilirubin and biliverdin in AD individuals in comparison to MCI 
and controls (Trushina et al., 2013). Other studies also reported lower 
levels of antioxidants in plasma of AD patients, including bilirubin, 
supporting the hypothesis that oxidative injury may have important role 
in the pathogenesis of AD (Di Domenico et al., 2012; Kim et al., 2006). 

The main limitation of this study is its cross-sectional design since the 
longitudinal follow-up would allow us to identify those MCI patients and 
healthy controls who will potentially develop dementia over time. 
Another limitation of the study is the difference in age, BMI and blood 
glucose level between subject groups. The study included only elderly 
population (age ≥ 65 years) in order do minimalize the age-dependent 
metabolome changes. We also used correlation analysis and multi-
linear regression model in order to rule out age, BMI and blood glucose 
level as the main cause of the difference in the representation of indi-
vidual metabolites between the examined groups. However, despite 
additional analyzes showing that diagnosis is the main parameter that 
contributes to the difference between the compared groups, we cannot 
definitively claim that age, BMI and blood glucose level have no influ-
ence on the abundance of investigated metabolites. Strengths of the 
study are in the inclusion of ethnically homogenous groups and 
adequate sample size, along with needed statistical power. However, 
further studies are needed to validate our findings. In order to support 
these results, multicenter clinical validation trials and metabolomics- 
based longitudinal studies with larger sample sizes will be crucial. 

5. Conclusion 

In this study, we applied the untargeted metabolomic approach to 
investigate the changes in biochemical pathways related to AD pathol-
ogy. The multiplatform metabolomic profiling of the plasma samples 
from AD patients, MCI subjects and healthy controls revealed signifi-
cantly altered levels of compounds belonging to the class of amino acids 
and their derivatives, fatty acids, organooxygen compounds, fatty acyls, 
glycerolipids, glycerophospholipids and sterol lipids. The results of this 
study indicate disturbed metabolism of lipids and amino acids and an 
imbalance of metabolites involved in the energy metabolism in patients 
diagnosed with AD, compared to the healthy controls and MCI subjects, 
suggesting potential, easily accessible, diagnostic and prognostic 
metabolomic biomarkers of AD. 
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Otero, A., 2018. Knowledge-based metabolite annotation tool: CEU mass mediator. 
J. Pharm. Biomed. Anal. 154, 138–149. https://doi.org/10.1016/j. 
jpba.2018.02.046. 

Godzien, J., Alonso-Herranz, V., Barbas, C., Armitage, E.G., 2015. Controlling the quality 
of metabolomics data: new strategies to get the best out of the QC sample. 
Metabolomics 11, 518–528. https://doi.org/10.1007/s11306-014-0712-4. 
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Konjevod, M., Nikolac Perkovic, M., Sáiz, J., Svob Strac, D., Barbas, B., Rojo, D., 2021. 
Metabolomics analysis of microbiota-gut-brain axis in neurodegenerative and 
psychiatric diseases. J. Pharm. Biomed. Anal. 194, 113681 https://doi.org/10.1016/ 
j.jpba.2020.113681. 

Kroboth, P.D., Salek, F.S., Pittenger, A.L., Fabian, T.J., Frye, R.F., 1999. DHEA and 
DHEA-S: a review. J. Clin. Pharmacol. 39, 327–348. https://doi.org/10.1177/ 
00912709922007903. 
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