

Metal concentrations in the fish gut content as indication of dietary exposure and in fish calcified structures as long-term exposure

FINAL PROJECT MEETING

Integrated evaluation of aquatic organism responses to metal exposure: gene expression, bioavailability, toxicity and biomarker responses (BIOTOXMET)

Zuzana Redžović

Zagreb, February 17, 2025

- the first report on metal(loid)s in GC of brown trouts
- omnivorous species (insect larvae, detritus, plants, gammarids, mollusks) → high variations in metal(loid) concentrations among individual fish
- sequences of metal(loids) notably different in comparison to fish intestine → accumulation depends on the bioavailability of metal(loid)s in fish diet

 $Fe > Zn > Sr \ge Mn > Cu > Ba \ge V \ge Cr \ge Co \ge Rb \ge Pb \ge Cd \ge As > Se \ge Mo > Cs > TI > Hg$

the levels of most of elements were highest in GC of fish from KNP - similar to spatial distribution in river sediment

SPATIAL

DIFFERENCES

Overall, metal(loid) concentrations in GC of fish were typically the lowest at KRS \rightarrow the lowest metal(loid) exposure

SPATIAL DIFFERENCES

 aligns with the spatial distribution of Cu in fish intestine and acanthocephalans

Macroelement concentrations in the gut content of brown trout *S. trutta*

Ca > Na > K > Mg

Mg

- the majority of elements in GC had higher concentrations in spring than autumn
- higher gut fullness indices found in spring maximum feeding rates
- similar pattern also observed in parasites and intestine

Relationships between metal(loid) concentrations in fish intestine and acanthocephalans to gut contents

Ratio %	Krka River source (KRS)		Town of Knin (KRK)		Krka National Park (KNP)	
	INT/GC	AC/GC	INT/GC	AC/GC	INT/GC	AC/GC
As	13.9	30.0	25.2	36.5	7.5	28.4
Ba	0.68	4.5	0.79	7.3	0.63	6.4
Cd	43.5	313	26.7	157	23.9	59.3
Со	18.1	20.5	27.0	23.4	9.5	7.1
Cr	10.6	23.0	13.8	24.6	1.6	2.9
Cs	66.8	31.3	22.5	12.8	5.5	3.6
Cu	19.3	190	14.6	181	12.1	87.9
Fe	13.5	40.0	15.6	20.4	3.5	3.9
Hg	394		279	827	362	792
Mn	8.4		6.1	33.5	3.2	14.2
Mo	28.1	< 15%	50.3	24.8	14.2	7.1
Pb	1.0	4 10/0	5.4	221	5.1	42.3
Rb	648	399	481	273	216	151
Se	180	237	263	197	250	189
Sr	1.2	5.1	0.97	8.0	2.6	14.0
- 11	193	4355	TŨŤ	2793	110	1039
V	4.5	4.6	5.1	7.5	1.0	1.1
Zn	872	216	830	133	584	90.0
Ca	2.4	13.1	2.ô	25.2	3.0	18.3
ĸ	643	458	440	316	300	285

• minimal bioavailability from food to the fish intestine \rightarrow their absorption is physiologically regulated

Relationships between metal(loid) concentrations in fish intestine and acanthocephalans to gut contents

Ratio %	Krka River source (KRS)		Town of Knin (KRK)		Krka National Park (KNP)		
	INT/GC	AC/GC	INT/GC	AC/GC	INT/GC	AC/GC	
As	13.9	30.0	25.2	36.5	7.5	28.4	
remarkable luminal absorption efficiency							
Cr	10.6	23.0	13.8	24.6	1.6	2.9	
Cs	66.8	31.3	22.5	12.8	5.5	3.6	
Cu	19.3	190	14.6	181	12.1	87.9	
Fe	13.5	12.3	15.6	20.4	3.5	3.9	
Hg	394	1837	279	827	362	792	
Min	8.4	63.3	6.1	33.5	3.2	14.2	
Мо	28.1	13.1	50.3	24.8	14.2	7.1	
Pb	7.0	241	5.4	221	5.1	42.3	
KD	648	399	481	2/3	216	151	
Se	180	237	263	197	250	189	
- Sr	î.2	5. i	0.97	8.0	2.0	14.0	
	193	4355	101	2793	110	1039	
V	4.5	4.0	5. i	7.5	1.0	1.1	
∠n	872	216	836	133	584	90.0	
Ca	2.4	13.1	2.8	25.2	3.8	18.3	
K	643	458	440	316	380	265	
wig	63.7	148	63.6	195	12.1	/4./	
Na	52.1	95.4	53.3	84.5	52.2	84.9	

Calcified structures in fish - sample preparation

otoliths

lapping films of 30µm and 3µm

scales

- photographed using a binocular microscope with a digital camera
- printed on A3 paper, the most appropriate lines for measurements determined and marked

Measurements

laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)

ESI NWR 213 Laser-Ablation System

Agilent 8800 ICP-MS-CRC-MS

Measurements

Otoliths

 FEBS-1 (<u>Otolith</u> Certified Reference Material for Trace Metals, National Research Council Canada) and MACS-3 (<u>Calcium carbonate</u> standard, United States Geological Survey, 189 USA)

Scales

 NIST SRM 1400 (Bone ash, National Institute of Standards and Technology, Gaithersburg, MD, USA) and NIST SRM 1486 (Bone meal, National Institute of Standards and Technology, Gaithersburg, MD, USA)

Isotopes	Abundance	Integration time (s)
13C		0,2
23Na		0,1
24Mg		0,1
27AI		0,1
43Ca		0,05
44Ca		0,05
55Mn		0,1
56Fe		0,1
57Fe		0,1
59Co	100%	0,1
63Cu	69,15%	0,1
66Zn	27,73%	0,1
75As	100%	0,1
88Sr	82,60%	0,1
111Cd		0,1
114Cd		0,1
133Cs		0,1
138Ba		0,1
202Hg		0,1
205TI	70,40%	0,1
208Pb	52%	0,1
238U		0,1

- the metal incorporation in the same otolith varied depending on the element and showed different patterns along ablation lines
- most pronounced for:

⁸⁸Sr/⁴³Ca SPRING

KRS

KRK

KBL

⁸⁸Sr/⁴³Ca AUTUMN

KRK

KBL

9	2400		Sr	spring	5		
9	2400]					
_	2000	1					
Ig L	1600						
-	1200	1					
	800	1					
	400						
	0	_					
			KRS	KRK	KBL		
	2800	-	Sr autumn				
	2400	-					
_	2000	-					
GL-	1600						
Ħ	1200	-			1777		
	800	-					
	400	1		entima.			
	0		KRS	KRK	KBL		

Sr

- KBL > KRK = KRS
- the same trend in river water
- geological differences

Halamić, J. & Miko, S. (eds) (2009): Geochemical Atlas of the Republic of Croatia.-Croatian Geological Survey, 87pp., Zagreb.

- Ba
- lower values than Sr, but similar trends
- differences between the sites smaller consistent with the geological differences and the levels observed in the water

KRS

KRK

KBL

- ΤI
- KRS > KRK = KBL
- in otoliths and water in spring
- the highest Tl concentrations at the source have been consistently confirmed in both water and bioindicator organisms
- reflect geological background of the catchment area

Results - scales

 the trends in metal content profiles along the ablation lines similar for all elements, confirming a continuous metal exposure during the life span of the fish

Results - scales

KBL > KRK = KRS

- when comparing between the different sites most of the elements the same trend as observed in the otoliths and water
- scales confirmed as a good nonlethal alternative for assessing metal exposure

Stocked fish?

- abnormal otoliths and replacement scales in many individuals – more common in farmed fish
- abnormal otoliths different shape and composition
 - no variations in temperature and food availability \rightarrow no annular rings - fast growth due to environmental control \rightarrow development of vaterite instead of aragonite
- replacement scales form after the loss of scales - injuries in a hatchery
- only the outermost part representative of conditions in the river

Conclusions

- first results on metal(loid)s in GC of brown trouts indication of dietborne metal uptake
- metal(loid) concentrations in GC were generally the highest at KNP reflecting the spatial distribution of metal(loid)s in river surface sediment
- ratios between metal accumulation in the intestine and GC, and acanthocephalans and GC indicate:
 - 1) low bioavailability of As, Ba, Ca, Cr, Cu, Fe, Mn, Pb, Sr, and V from the dietary sources;
 - 2) high absorption of TI, Se, Hg, Rb, K and Zn
 - cautious interpretation: the metal(loid)s in the GC reflect the source of metal(loid)s in the food at the time of sampling, while organisms accumulate metal(loid)s over a longer period of time and exhibit a more chronical response

Conclusions

- fish calcified structures reflect spatial differences in metal concentrations in the environment
- otoliths provide a time resolved record of metal exposure over the life span of a fish
- scales are less reliable indicators of time of the exposure (can be partially reabsorbed by the fish), but represent nonlethal alternative
- structures from the stocked fish will be separated from wild population and data will be further processed and quantified → the first record of water chemistry over the life history of a freshwater fish in Croatia
- these data contribute to interpretation of metal accumulation in fish soft tissues, and to the protection of trout population in the sensitive karst Krka River

ΒΙΟΤΟΧΜΕΤ

- Vlatka Filipović Marijić
- Tatjana Mijošek
- Sara Šariri
- Irena Vardić Smrzlić
- Zorana Kljaković-Gašpić
- Želimira Cvetković
- Željka Fiket

 Croatian Science Foundation project: Integrated evaluation of aquatic organism responses to metal exposure: gene expression, bioavailability, toxicity and biomarker responses (BIOTOXMET) project number: IP-2020-02-8502

- Damir Valić
- Tomislav Kralj
- Josip Barišić
- Marija Kuštro
- Ivana Karamatić
- Dušica Ivanković
- Zrinka Dragun
- Zoran Kiralj

BICTOXMET

Bandoniene

Johanna

Irrgeher

Thomas Prohaska

Montanuniversität Leoben, Leoben, Austria

Mukhametzianova

Andreas Zitek

Wagner

Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Tulln, Austria

 Croatian Science Foundation project: Integrated evaluation of aquatic organism responses to metal exposure: gene expression, bioavailability, toxicity and biomarker responses (BIOTOXMET) project number: IP-2020-02-8502