

Transcriptome and gene expression profiling in fish intestine and acanthocephalans

FINAL PROJECT MEETING

Integrated evaluation of aquatic organism responses to metal exposure: gene expression, bioavailability, toxicity and biomarker responses (BIOTOXMET)

Zagreb, 19th May 2023

Irena Vardić Smrzlić

Ciljevi projekta

O1. Procijeniti sezonske i dugoročne trendove koncentracija metala rijeke Krke (postaje: izvor (I), nizvodno od ulijevanja otpadnih voda (II), Brljansko jezero (III) te četiri pritoke: Krčić (IV), Kosovčica (V), Orašnica (VI), Butišnica (VII)) u:

01.1. vodi;

O1.2. sedimentu.

O2. Odrediti biološke odgovore organizama na izloženost i/ili učinak metala u različitim okolišnim uvjetima praćenjem:

O2.1. izravnih učinaka riječne i otpadne vode na laboratorijske organizme (alge i rakovi- testovi fito- i zootoksičnosti), koji pripadaju različitim trofičkim nivoima i različite su osjetljivosti na zagađenje od riba **O2.2.** biomarkerskih odgovora u probavilu nativnih riba te metalotioneina u kukašima, kao proteina odgovornih za homeostazu i detoksifikaciju metala,

O2.3. histopatoloških promjena, posebno kvantitativnih i kvalitativnim promjena mukoznih stanica probavila riba

O2.4. koncentracija metala u mekim tkivima (probavilo, mišić) i kalcificiranim strukturama riba (ljuske, otoliti) te u kukašima.

O3. Procijeniti bioraspoloživost i udio toksične frakcije metala unešenih hranom u ribe određivanjem:

O3.1. udjela metabolički raspoložive frakcije (koja može biti i potencijalno toksična jer se ovi metali mogu vezati na biološki važne molekule);

O3.2. detoksificirane frakcije metala (nemaju toksični učinak);

O3.3. trofički raspoložive frakcije metala (raspoloživi za predatore);

O3.4. koncentracija metala u sadržaju probavila riba (unos putem hrane).

O4. Odrediti aktivne stanične procese u kukaša i probavilu riba u okolišnim uvjetima različite izloženosti metalima profiliranjem:

O4.1. raspodiele metala među citosolskim proteinima;

O4.2. transkriptoma i ekspresije gena.

SALMO TRUTTA

- RNA extraction
- Commercial RNA sequences (Novogene)

Transcriptome analysis

Gene expression analysis

- DEG analyses by RNA-seq
- qPCR

Transcriptome analysis of Salmo trutta intestinal tissue infested by Acanthocephala (in preparation)

Fig. 2 Phylogenetic analyses of members of three Acanthocephala genera from Croatia based on partial COI marker sequence (565 bp).

The MJ network analysis of *D. truttae* based on COI sequence analyses do not reflect clear geographic structuring of Krka River and Una River specimens (Fig. 2). The large haplotype diversity (HD = 0.964) is due to the large number of haplotypes shared by only one or two individuals.

De novo transcriptome analysis of Dentitruncus truttae reveals metal-binding proteins in Acanthocephala

Sara Šariri¹, Irena Vardić Smrzlić^{1*}, Tatjana Mijošek Pavin¹, Vlatka Filipović Marijić^{1* (Scientific Reports 2025)}

Figure 4. Phylogenetic analysis of *D. truttae* **zinc metalloproteases** using 1000 replicates and Whelan Goldman + Freq Model.

Figure 3. Workflow for RNA-Seq Analysis and Identification of Metal-Binding Proteins in *D. truttae*

Figure 5. Phylogenetic analysis of two **metallothioneins** of *D. truttae* using 1000 replicates and JTT matrix-based Model

> **Figure 6.** Hierarchical clustering heatmap of *D. truttae* **metal-binding proteins lacking PFAM definition** into three clusters (CL1, CL2, and CL3) based on metal binding preferences

The results presented provide a valuable basis for further investigations of metal homeostasis in these parasites and for solving many questions about the phylogeny, taxonomy, diversity and evolution of Acanthocephala.

Comparative Transcriptome Analysis of Gene Expression in Acanthocephala Parasites from Fish in Polluted and Reference Sites and under Cd2+ treatment (in preparation)

Figure 7. Gene Ontology Enrichment and Differential Expression Analysis

Comparative Transcriptome Analysis of Gene Expression in Acanthocephala Parasites from Fish in Polluted and Reference Sites and under Cd2+ treatment (in preparation)

Figure 9. KEGG pathway enrichment analysis

Real-time PCR assays for quantification of up and down regulated genes from Acanthocephala (*in preparation*)

SALMO TRUTTA INTESTINE

Transcriptome analysis of Salmo trutta intestinal tissue infested by Acanthocephala (in preparation)

Sensory system 19 Nervous system cretory system mental adaptation 1461 G ndocrine system Digestive system ent and regeneration 1435 Circulatory system 1188 Aging 509 Unclassified: signaling and cellular processes 770 Unclassified: metabolism 708 Unclassified: metabolism in the abolism in the abol E Signal transduction Membrane transport Transport and catabolism Cellular community - prokaryotes I60 Cellular community - eukaryotes Cell motility Cell growth and death Protein families: signaling and cellular processes Protein families: metabolism Protein families: genetic information processing 0 5 10 15 20 Percent of Genes (%) 25 30 35

KEGG Classification

Figure 10. GO clasification

Figure 11. KEGG clasification

Real-time PCR assays for quantification of up and down regulated genes from Acanthocephala (*in preparation*)

Figure 12. KO pathway enrichment analysis

Real-time PCR assays for quantification of up and down regulated genes from Acanthocephala (*in preparation*)

ACANTHOCEPHALA

Figure 13. KEGG pathway enrichment analysis

PlvsRI (KEGG)

-log10(padj)

3

THANK YOU!