

Nano secondary ion mass spectrometry (NanoSIMS) – technique and application to biological samples

Dirk Schaumlöffel

Université de Pau et des Pays de l'Adour / CNRS Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 IPREM/LCABIE, Pau, France

KICK-OFF MEETINGAccumulation, Subcellular Mapping and Effects of Trace Metals in AquaticOrganisms (AQUAMAPMET)Zagreb, 14 September 2015

Université de Pau et des Pays de l'Adour / CNRS

IPREM - Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux

4 divisions

Staff

120 permanents

100 PostDocs and PhD students

Physicochemistry

Analytical Chemistry: bio-inorganic and environment

Polymer chemistry

Microbiology and environment

Université de Pau et des Pays de l'Adour / CNRS

IPREM 1

IPREM 2

- **1** Introduction to SIMS
- 2 Element imaging by Nano Secondary Ion Mass Spectrometry (NanoSIMS)
- 3 Application to biological samples: subcellular element imaging

SIMS : Secondary ion mass spectrometry

Dynamic SIMS technique

 Samples analyzed under ultra high vacuum (UHV); biological samples must be dehydrated.

- Bombardment by focused Primary lons (PI):
 - **Collision cascade** (10-20nm depth) with simultaneous Implantation and Sputtering.
 - Use of reactive PI species to enhance the ionization yield (O⁻ for + ions, Cs⁺ for ions)

• All molecules are broken, single atoms and clusters are ejected.

• A small fraction is ionized (+ or - charge), SI available for Mass Spectrometry.

The Secondary lons, characteristic of the local composition, are collected, then separated in a magnetic sector analyzer according to their **mass/charge** ratio: SIMS reveals **elemental** (H included) and **isotopic** surface composition

Cameca SMI 300, 1968

Cameca NanoSIMS50, 2000

The beam size of the microprobe

Nano Secondary Ion Mass Spectrometry (NanoSIMS)

The NanoSIMS 50L instrument

part of the new Mass Spectrometry Center in Pau (MARSS)

- Reactive primary ions; lateral resolution: 50nm in Cs⁺, 200nm (50nm) in O⁻)
- Parallel Detection: 7 masses
- High Sensitivity <u>together with</u> High Mass Resolution <u>and</u> small spot size

Original design by Pr. Slodzian/University Paris Sud, Orsay. Developed in collaboration by UPS Orsay, ONERA and CAMECA.

NanoSIMS : Ionic microprobe

(http://presolar.wustl.edu/nanosims/ schematic.html)

Analysis by scanning of a fine probe (50nm with Cs⁺)

Parallel ions counting and reconstruction of the elemental distribution (and isotopic)

NanoSIMS 50L scheme

SIMS Signal : Secondary ion intensity

Useful Yield vs element

Element

Useful Yield vs matrix

nb ions detected

nb atoms sputterized

Isotopic ratio not affected by the UY

Matrix effect → Quantification : difficult

Philipp, P. et al., Int. J, of Mass Spec. 2006

High Mass Resolution need in SIMS

In SIMS mass interferences are usually present at each unit mass.

High Mass Resolution is necessary to resolve such mass interference, specially for precise isotope ratios, quantitative measurements and trace level detection.

Flat top peak mode is used for better isotope ratio precision and reproducibility.

Note the dynamic range (log. scale) and peak shape.

Section of embedded biological tissue.

The uniqueness of the NanoSIMS is to keep nearly full Transmission (= High Sensitivity; <u>ppm level</u> for most elements) at High Mass Resolution ($M/\Delta M = 5000$) together with High Lateral Resolution (< 50nm).

Curves extracted from: High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. C. Lechene et al, Journal of Biology 2006, Volume 5, Article 20.

Secondary Ion Yields -- Primary Beam Effects

Н	0 ⁺ ₂ Primary Postive Secondary									He							
Li	Be		Cs ⁺ Primary Negative Secondary							В	С	N	0	F	Ne		
Na	Mg									AI	Si	i P	S	CI	Ar		
к	Ca	Sc	Ti	۷	Cr	Mr	Fe	Ca	Ni	Cu	ı Zr	Ga	i Ge	e As	s Se	: Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Po	I Aç	l Cq	In	Sr	n SI	b Te	: 1	Xe
Cs	Ba	La	Hf	Та	W	Re	0s	; Ir	P	: Au	ı Hç	TI	Pi	<mark>o</mark> Bi	Po	At	Rn
Fr	Ra	Ac	łc														
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Relative negative ion yield for a Cs⁺ ion source in SIMS

Relative positive ion yield for a O⁻ ion source in SIMS

Imaging of major And trace elements should be possible: **Ca, Mg, Mn, Cr, Cu**

New O- source developed on our instrument by CAMECA

Determination of the size of the O⁻ primary ion beam (probe size)

Al/Si oxide grain sampleImage size:3 x 3 µmProbe size:40 nm (16-84%)Probe intensity:0.3 pA

Line scan (left image) showing **intensity variation** from **16 to 84 %:** determination of **probe size** (resolution)

Comparison of NanoSIMS primary ion sources

The new oxygen ion source show similar sensitivity and even better resolution **(40 nm)** as the cesium ion source and by far better characteristics (resolution and sensitivity) than the old oxygen ion source.

Advantages of the new O⁻ source

- Higher beam density = better sensitivity for metals (Ca, Fe, Cu, Mn....)
- **Higher lateral resolution** than conventional Oxygen sources = sharper images enabling the observation of smaller details
- **Less maintenance** = less instrument downtime
- **Stability:** < 1.6 % over 14h; **lifetime:** > 1000h (up to now)

The NanoSIMS: a scanning Ion Microprobe with a multicollection mass spectrometer

Ultra High Vacuum (→ dehydrated sample)

Sample

1454	1449	1411	1347	
226861	224906	219379	213200	20639
0.637%	0.640%	0.639%	0.628%	0.597%
1500	1414	1341		
222784	220467	212399	204234	
0.669%	0.637%	0.627%	0.566%	
1414	1265			803
219466	212200	204972		19415
0.640%	0.593%		0.494%	0.4129
1326	1108			789
211556	204599		193922	19256
0.623%	0.539%	0.471%	0.421%	0.4089

Schematics from: M. Steinhauser et al., Nature, Vol 481, 26 January 2012

Comparison of different MS imaging techniques

Organic information

Mass resolving power

	Dynamic SIMS	Static SIMS	(MA)LDI-TOFMS	FT-MS (MALDI)
Data	Elements	Elements + organic fragments	Pseudo-molecular (low fragmentation)	Pseudo molecular (low fragmentation)
Lateral resolution	50 – 100 nm	200 nm - 10 mm	10 - 50 mm	50 - 200 mm
Field of View	80 /600 mm	9 cm	15 cm	n.a.
Typical mass range	< 250 Da	< 1 000 Da	> 100 000	> 10 000
Mass resolving Power	15 000	10 000 (28 Da)	20 000 (2000 Da)	> 1 000 000 (1000 Da)

Lateral resolution

Sensitivity

Fragmentation

The ultimate microscope

Figure: by curtesy from Jean-Nicolas Audinot, Centre de Recherche Gabriel Lippmann, Luxembourg

Strong points of NanoSIMS

- Allmost all Elements (from H, D, T,... up to Pu)
- Very High Sensitivity: down to ppb in spot analysis, ppm in imaging,
- **Quantification possible**, but difficult (Relative Sensitivity Factors)
- Isotopic composition (signature of origin and history in astrophysics, of past climate and origin and history in geology, of path and activity in biology, of path in materials)
- Localized, micro-analysis: down to 50nm lateral resolution (NanoSIMS), access to 3D analysis with depth resolution of 10-15nm with NanoSIMS.
- Large **sample size** is possible for navigation and finding areas of interest
- Minimal **sample preparation** for solids (polishing and metal coating for minerals), dehydration or **TEM-like preparation for biological tissues**.

Biological applications

Use of the <u>novel oxygen primary ion source</u> for the localization of major (**Na, Ca, Mg**) and trace (**Fe, Cu, Mn, Zn**) metals Involved in physiological processes in plant cells

Biological sample preparation

TEM-like preparation (transmission electron microscopy)

The sample is analyzed at room temperature **under vacuum** It must be **dehydrated and fixated**.

Flat samples are required. *Thin sections* (300-400nm) are preferable to avoid sample charging under ion bombardment. **Ultramicrotome**.

Sample preparation will then depend on application:

- **chemical fixation**, resin embedding, thin sectioning.
- **fast freezing**, cryo-substitution, resin embedding and thin section deposited on metal or silicon substrate.

Biological sample preparation

Chemical fixation

Glutaraldehyde Formaldehyde Osmium tetroxide

Dehydration

Solvent baths (acetone or ethanol/water) with increasing solvent concentrations

Resin embedding

Solvent baths with increasing resin concentrations

Ultramicrotomy

300-400 nm sections

less redistribution of highly diffusable trace metals !

Cryo fixation

high pressure freezer

tissues (up to 6 mm diameter, 200 µm thick)

Dehydration

Cryo-substitution lyophilization

Resin embedding

Equipment at Bordeaux Imaging Center

Application to a model organism: Chlamydomonas reinhardtii cells (unicellular green algae)

TEM analysis (70 nm thin section) resolution down to 1 nm

1 µm Nu : Flagella F : Vacuoles v : Nucleus Ν Nu : Nucleolus : Chloroplast С

т

Ρ

: Thylakoid

: Pyrenoid

Comparison with schematic view

NanoSIMS analysis of Chlamydomonas reinhardtii cells

Comparison conventional Duoplasmatron O⁻ ion source and novel O⁻ ion source

Duoplasmatron O- ion source

n

²³Na

300 nm thin sections

relative intensity:

20 x 20 µm

256x256 pixel

12 min

1 plane

⁴⁰Ca Max 0

00

5 µm

New O⁻ ion source prototype

5 🛄 m

pyrenoid with starch plates

Min

Subcellular element imaging by NanoSIMS (new ion source)

Pyrenoid Granules ? with starch plates Acidocalcisomes

C

Chloroplast Thylakoid Pyrenoid

Single cell imaging: 12 x 12 μ m, 22 min, 512x512 pixel, 2 planes

Scheme of a Acidocalcisome

R. Docampo, W. de Souza, K. Miranda, P. Rohloff, S. N. J. Moreno, Nature Reviews 2005, 3, 251-261

Biological applications

Use of the <u>conventional cesium primary ion source</u> for isotopic tracer experiments (C-13): Investigation of physiological processes under Cd stress

Parallel TEM/X-EDS experiments

starch

Investigation of the CO₂ fixation Under Cd stress

NanoSIMS with <u>Cs source</u> TEM/X-EDS

Simplified schematic drawing of metabolic pathways in Chlamydomonas reinhardtii

> Xenie Johnson, and Jean Alric J. Biol. Chem. 2012;287:26445-26452

C. reinhardtii wt in mTAP medium 70 µM Cd

Pyrenoid: accumulation of RuBisCo NanoSIMS

TEM

TEM/X-EDS

C. reinhardtii wt in mTAP medium **70 μM Cd**

C. reinhardtii wt in mTAP medium **control**

Simplified schematic drawing of metabolic pathways in Chlamydomonas reinhardtii

Xenie Johnson, and Jean Alric J. Biol. Chem. 2012;287:26445-26452

Biological applications

Use of the <u>novel oxygen primary ion source</u> for the localization of major (**Na, Ca, Mg**) and trace (**Fe, Cu, Mn, Zn**) metals Involved in physiological processes in plant cells

Insight into photosynthesis

Subcellular localisation of metals in Arabidopsis thaliana leaf cells

Essential (trace) metals involved in photosynthesis

Image of a whole cell: sodium, calcium and magnesium imaging

Trace element imaging

Insight into the chloroplast

512 x **512** pixel 10 x 10 μm

Overlay of **30** planes (single images)

Total acquisition time: **11h** (21.8 min/plane)

3D reconstruction of 30 successive planes :

⁴⁰Ca

Conclusions

NanoSIMS offers many applications in different scientific fields : Microbiology, Cell Biology, Environment but also Material Sciences, Cosmology, Geochemistry :

- Surface analysis by imaging, element quantification, and isotope analysis
- High spatial resolution: 50 x 50 nm in 2D

50 x 50 x 10 nm in 3D

- Parallel detection up to 7 masses
- High sensibility
- High mass resolution

A **novel Oxygen primary ion source** shows high stability and high resolution and allows a parallel sensitive detection of biologically relevant major and trace elements at subcellular level.

Acknowledgements

University of Pau/CNRS-IPREM

Julien Malherbe Florent Penen Marie-Pierre Isaure NanoSIMS Engineer PhD student Lecturer

University Halle/Saale (Germany)

Dirk Dobritzsch(plant biochemistry)Julia Frank(plant biochemistry)Ivo Bertalan(plant biochemistry)Gerd-J. Krauss(plant biochemistry)Martin Hertzberg(biochemistry)Gerd Hause(sample preparation)

Bordeaux Imaging Center Etienne Gontier (TEM, sample prep.)

University of Bordeaux **Philippe Le Coustumer** (TEM/X-EDS)

CAMECA Paris (NanoSIMS) François Horreard François Hillion

French ANR-EQUIPEX program (Equipment of Excellence) Project: ANR-11-EQPX-0027 – Mass Spectrometry Center MARSS

Thank you for your attention