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Quantitative structure-toxicity relationships were developed for the prediction of aqueous toxicities forPoecilia
reticulata(guppy) using the CODESSA treatment. A two-parameter correlation was found for class 1 toxins
with R2 ) 0.96, and a five-parameter correlation was found for class 2 toxins withR2 ) 0.92. A five-
parameter correlation for class 3 toxins hadR2 ) 0.85. The correlations for class 4 toxins were less satisfactory.
All the descriptors utilized are calculated solely from the structures of the molecules, which makes it possible
to predict unavailable or unknown toxins.

INTRODUCTION

Numerous organic chemicals can be environmental pol-
lutants. Because of this, during the past decade a great deal
of effort has been put into the study of the relationships
between a compound’s structure and its toxicity. Attempts
have been made to classify chemicals according to the
mechanism of their toxicity and to screen them for their
environmental risk assessment. Several studies relate toxic
activity to the partition coefficient. Early papers by Overton1

and Meyer2 reported a correlation between the olive oil-
water partition coefficient and narcosis of simple compounds.
Later, Hansch and co-workers3 developed relationships
between the biological activities and the hydrophobic,
electronic, and steric properties of compounds. The hydro-
phobic interaction is usually expressed by the octanol-water
partition coefficient (logP). Most of the QSAR applications
to toxicities have been developed for congeneric sets, but
non-congeneric sets of compounds have also been docu-
mented in several reviews.4-7

THE CLASSIFICATION OF ORGANIC
ENVIRONMENTAL POLLUTANTS

The research of Ko¨nemann and co-workers8 on inert
narcotic pollutants led to the so-called baseline toxicity
concept,9 which expresses the minimal toxic effect exerted
by a chemical. In the framework of this concept, the toxicity
is related to the octanol-water partition coefficient4,10,11

expressed as the median lethal concentration (LC50). Chemi-
cals with toxicities in line with the baseline concept are
classified as inert and are not as interacting with specific
receptors in an organism. In aquatic toxicity, this mode of
action is called narcosis.12 It is considered to be completely
nonspecific, depending solely on the compounds hydropho-

bicity, i.e., whether the compound is as toxic as its
hydrophobicity indicates. However, many classes of com-
pounds are more toxic than predicted by the baseline toxicity
concept,4 and these are now discussed.

(i) One group includes phenols, anilines, and nitrogen
heterocycles. These compounds produce toxicity syndromes
similar to those from inert narcotic pollutants but have greater
toxicities.13,14 They act by a so-called “polar narcosis”
mechanism, which is associated with the presence of a strong
hydrogen bond donor (polar) group in the molecule. Other
examples include nonspecifically acting uncouplers of oxida-
tive phosphorylation.15 Nonpolar and polar narcotic pollutants
are also classified, according to their mode of action, into
narcosis I and narcosis II compounds.16 It is estimated that
about 60% of the industrial chemicals entering the aquatic
environment exert toxicity by means of narcosis.10 For
narcosis, the lethal concentrations of a compound are often
close for similar species (e.g. for the guppy and the fathead
minnow), which is not surprising considering the nonspecific
nature of narcotic toxins.

(ii) Another group of toxins consists of those that either
react unselectively with common biomolecular chemical
substructures, such as nucleophilic sites, or are bioactivated
(metabolized into more toxic species).17-19

(iii) A final group of chemicals exhibit toxicity due to
specific interactions with particular receptor molecules.20

Hermens et al. recently devised a rule-based system to
classify individual compounds into four classes along lines
similar to those described above: class 1 (inert chemicals:
nonpolar narcosis), class 2 (less inert chemicals: polar
narcosis), class 3 (reactive chemicals), and class 4 (specif-
ically acting compounds, such as pesticides).21 These rules
rely on the presence or absence of certain structural or
substructural features to assign the compound to one of the
four classes. It is possible to calculate either an expected
effect concentration (LC50) or an expected range of the
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possible effect concentrations for chemicals belonging to one
of these four classes based on the octanol-water partition
coefficient of the compound. An important drawback, which
is inherent to all rule-based classification systems, is that it
is impossible to classify compounds that do not fit the
existing rules, even if they have structural features that would
indicate toxicity.22

Moreover, any unambiguous division of compounds into
discrete classes is hardly feasible (or rational) since overlap
is inevitable and the qualitative variation of toxic action does
not necessarily parallel the chemical notion of different
classes.23 In addition, some substances, such as hexane, are
less toxic than would be expected because they are rapidly
metabolized. Other toxins with logP g 6 (e.g. hexachlo-
robenzene) can have LC50 values that are higher than
expected because their toxicity exceeds their water solubility.8

Other substances have a very low membrane affinity (low
log P) yet are quite toxic because they produce osmotic
effects24 rather than narcosis.

SURVEY OF PUBLISHED STRUCTURE-TOXICITY
CORRELATIONS

Table 1 lists published quantitative structure-toxicity
relationships, selected to exemplify the uses of experimen-
tally derived logP values to estimate toxicity and ways in
which logP has been combined with other descriptors. The
first group of correlations in Table 1 (#1-7) involves
structure-toxicity models, which correlate the toxicities for

small fish solely with logP. Models #1-3 follow the
baseline concept and accurately predict toxicities for class 1
compounds: alcohols, ketones, alkanes, aromatic hydrocar-
bons, and alkyl halides.8,10,24

Log P can be used as the sole descriptor for the correlation
of toxicities higher than baseline. Veiht and Broderius
showed that polar narcotics could be successfully correlated
in the set (#4) of 39 phenols and anilines16 for fathead
minnows. A similar but larger set (#5) of 95 phenols and
anilines was successfully used by Schultz et al. to correlate
and predict the 60 h growth inhibition of class 2 compounds
for Tetrahymnea pyriformis.25 This study demonstrated the
validity of growth inhibition assays as well as demonstrating
the strong correlation between the toxicity of polar narcotics
and logP. The same study25 also showed that phenol and
aniline derivatives containing phenylazo-, dinitro-, four or
five halo-substituents, or one nitro with two or more halo-
substituents were outliers and behaved as respiratory uncou-
plers rather than polar narcotics. The quality of the equation
for set #5 was enhanced (R2 ) 0.904) by adding a second
descriptor,∑σ, the summation of the electronic parameter.

Hermens and co-workers found (#6) that the guppy 14-
day toxicity of aldehydes (class 3) correlates with logP.26

Adding the corresponding reaction rate constants to the
model did not improve the model. Considerably better results
for simple aliphatic aldehydes were obtained by Schultz et
al.27 for Tetrahymnea pyriform(#7).

Table 1. Examples of QSAR Models on Toxicities

no. speciesa compounds valueb N classc R2 s #D F descriptors ref

1 TA alcohols, ketones, aromatic hydrocarbons C-1 18 1 0.968 0.227 1 d LogP 24
2 GU alcohols, ketones, alkyl halides, sub. benzenes LC50

-1 50 1 0.988 0.237 1 d LogP 8
3 FM alcohols, ketones, alkyl halides, sub. benzenes LC50 65 1 d d 1 d Log P, log(P+ 1) 10
4 FM phenols, anilines LC50 39 2 0.900 0.22 1 d Log P 16
5 CI phenols, anilines LC50

-1 95 2 0.818 0.320 1 419 Log P 25
6 GU aldehydes LC50

-1 14 3 0.852 0.19 1 d Log P 26
7 CI aldehydes IGC50

-1 14 3 0.961 0.168 1 294 Log P 27
8 GU organic halides LC50

-1 15 3 0.914 0.39 2 d Log P, log
(2484+ k-1)

28

9 FM ketones, esters, alcohols, nitriles LC50 57 1/2/3 0.85 d 2 d Log P,σd 29
10 FM ketones, esters, alcohols, nitriles LC50 57 1/2/3 0.85 d 2 d Log P,σI 29
11 FM anilines, phenols, benzenes LC50

-1 114 1/2/3 0.81 0.436 2 245 Log P,ELUMO 30
12 FM anilines, phenols, benzenes LC50

-1 114 1/2/3 0.81 0.436 2 239 Log P, SN
av 31, 30

13 FM acrylates LC50
-1 18 3 0.78 0.57 3 17 AR, BR-R. log P 33, 34

14 FM benzenes LC50
-1 122 1/2/3/4 0.831 0.40 2 291 Log P,Amax 35

15 GU benzenes LC50
-1 64 1/2/3/4 0.87 0.27 3 138 LogP, Amax,

Dmax

34, 35

16 MP ketones, aldehydes EC50 19 1/2/3 0.892 0.46 2 75 Log P,ELUMO 36
17 CI nitrobenzenes IGC50

-1 42 1/2/3 0.897 0.229 2 180 Log P,Amax 37
18 CI nitrobenzenes IGC50

-1 42 1/2/3 0.881 0.246 2 154 Log P,ELUMO 37
19 FM, GU alcohols, ketones, alkyl halides,

phenols, anilines
LC50 172 1/2 0.901 d 2 d Log P, Q- 22

20 GU alcohols, ketones, alkyl halides,
phenols, anilines

LC50 19 1/2 0.97 d 5 d Log P. Q-, Q+,
ELUMO, EHOMO

38

21 SN alcohols, ketones, alkyl halides,
phenols, anilines

LC50 19 1/2 0.97 d 5 d Log P. Q-, Q+,
ELUMO, EHOMO

38

22 WF alcohols, ketones, alkyl halides,
phenols, anilines

LC50 15 1/2 0.95 d 5 d Log P. Q-, Q+,
ELUMO, EHOMO

38

23 MB chloroanilines, -phenols, -benzenes EC50 48 1/2 0.89 0.302 3 55 1κ, RZ, CZ-0 42
24 MB chlorinated organic compounds EC50 80 1/2/4 0.77 0.5 3 91 TLSER 43
25 WF amines, chlorobenz. organotins organophos. EC50

-1 49 1/2/4 0.817 d 7 d 6 WHIM desc.
& MW

44

26 TA alcohols, ketones, alkyl halides, sub. benzenes C-1 84 1 0.947 0.246 4 351 LFER 45

a Abbreviation of species: TA, tadpole (Rana temporaria); GU, guppy (Poecilia reticulata); FM, fathead minnows (Pimephales promelas); CI,
cilate (Tetrahymena pyriformis); MP, marine prokaryote (Vibrio fischeri); SN, snail (Lymnaea stagnalis); WF, water flea (Daphnia magna); MB,
marine bacterium (Photobacterium phosphoreum). b In logarithmic scale.c Indicates class of the compound.d Value missing in original article.
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Models #8-10 in Table 1 used additional experimentally
derived descriptors together with logP. Hermens et al.
correlated 14-day guppy toxicities for 15 reactive organic
halides (#8) with logP values and their reaction rates with
4-(4-nitrobenzyl)pyridine as a standard nucleophile.28 Purdy
found that the toxicity for fathead minnows (#9) was
predicted with greater accuracy if either the Taftσ* or the
σI (polar and inductive) substituent constant was included
in the correlation.29 This provides (in both cases) the
following improvements inR2 values: for ketones, from 0.82
to 0.96; for esters, from 0.77 to 0.91; for alcohols, from 0.84
to 0.93; and most significantly for nitriles, from 0.15 to 0.85.
TheR2 value of the combined data set improved from 0.59
(using only logP) to 0.85 for the correlation using both log
P and the substituent constants (#9 and 10). Highly carban-
ionic species, which can be transported readily across the
gills and then metabolized into more reactive substances,
were outliers.

Structure-toxicity models (#11-22) in the third part of
Table 1 combine logP with one or more additional
theoretical molecular descriptor(s), generally derived from
quantum-chemical calculations. Veith and Mekenyan pre-
dicted the toxicities for a set of 114 benzenes, anilines, and
phenols using logP together with either the LUMO energy
(#11) or the average acceptor superdelocalizability (SaV

N )
calculated for the conjugatedπ-bonds in the molecule
(#12).30,31The two models (#11 and 12) are of similar quality,
which is understandable because the superdelocalizability
index32 is derived from the LUMO energy. The advantage
of using the reactivity index is that it reveals the type of the
reaction and possible reaction site. The combination of log
P and the superdelocalizability index allows compounds with
different modes of action to be modeled in one equation.
The authors also showed how one could distinguish between
the compounds with different mode of action on a “toxicity
response plane” using the average acceptor superdelocaliz-
ability.

Karanbunarliev et al.33,34used quantum chemically derived
acceptor superdelocalizabilities for the carbon of the polar
group to which the electron transfer occurs (AR), the bond
order for the bridging single bond that acquires double bond
character at the intermediate step of the reaction (BR-R), and
log P to predict the acute aquatic toxicity for fathead
minnows for a set of 18 Michael-type acceptors, mostly
acrylates, with CdO as the polar group (#13). Acceptor
superdelocalizability described most of the variance, and the
authors showed that quantum chemical descriptors are
compatible with the accepted mechanism. Karanbunarliev
et al. also analyzed the toxicities of the fathead minnow (#14)
in a diverse set of 122 substituted benzenes.35 In this study,
they used maximal acceptor superdelocalizability (Amax) for
theπ-sites of the benzene ring in addition to logP. The same
group also analyzed (#15) the toxicity of 64 substituted
benzenes toward guppies.34,35 The maximal acceptor super-
delocalizability (Amax) and the maximal donor superdelocal-
izability (Dmax) for theπ-sites of the benzene ring were used
in addition to logP.

Cronin et al. performed a series of studies combining
quantum chemical descriptors with logP. They analyzed the
toxicity of a diverse set of 19 compounds including alkanones
(nonreactive compounds with baseline narcosis mechanism),

aldehydes (Schiff base-forming mechanism of electrophilic-
ity), and alkenals (Michael-type acceptor mechanism of
electrophilicity)36 to Vibrio fischeri using the so-called
response-surface approach.31 The relative reactivity of the
compounds was described by including a quantum chemical
parameter, the energy of the lowest unoccupied molecular
orbital (ELUMO) (#16). They also described each subset with
separate correlation equations, involving logP as a single
descriptor. In subsequent work (#17) they analyzed the acute
toxicity of a diverse group of 42 alkyl- and halogen-
substituted nitro- and dinitrobenzenes, expressed as the 50%
growth inhibition concentration againstTetrahymena pyri-
formis.37 The best correlation equation was obtained by
relating toxicity to log P and the maximum acceptor
superdelocalizability on the benzene ring (Amax). Superde-
localizability, an atom based descriptor, is the most signifi-
cant parameter of equation #17, describing 80% of the
variance. Another model (#18) of similar quality (R2 ) 0.881)
was obtained withELUMO, a descriptor based on the entire
molecule.

Recently, significant contributions to the QSAR studies
of acute aquatic toxicity have been made by Hermens and
co-workers, who addressed the relationship between class 1
and class 2 narcotic pollutants. They applied a partial least
squares (PLS) and multilinear regression (MLR) analysis to
a set of 172 compounds (#19) to model the combined toxicity
of Pimephales promelasand/orPoecilia reticulata.22 A pool
of 11 descriptors (logP and quantum-chemical descriptors)
provided a model of four significant latent variables with
R2 ) 0.928. Multilinear regression analysis of this set
revealed that logP represents 87% of the variance in the
data set and the best two-parameter correlation equation
involved the most negative charge (Q-) on any non-hydrogen
atom (#19). Based on the PLS and MLR analysis they
concluded that the hydrogen bond acceptor and (less
importantly) donor capacities are the prime determinants for
differentiating between class 1 and class 2 compounds.

Hermens and co-workers extended the range of species
and constructed unified correlation equations (#20-22) for
the water flea (Daphnia magna), guppy (Poecilia reticulata),
and pond snail (Lymnaea stagnalis).38 In addition to the
conventional hydrophobicity term (logP), equations (#20-
22) each include four descriptors for the ability of a molecule
to form hydrogen bonds: a hydrogen bonding acceptor term
(Q-, the most negative partial charge on any non-hydrogen
atom of the molecule), a hydrogen bonding donor term (Q+,
the most positive partial charge on a hydrogen atom), and
EHOMO andELUMO to account for the covalent contribution
to the hydrogen bond. The training sets gave high quality
correlation equations for three species (#20-22). The valida-
tion sets resulted in good correlations for 143 compounds
to Poecilia reticulata(R2 ) 0.93); for four compounds to
Lymnaea stagnaliswith R2 ) 0.88; and for 52 compounds
to Daphnia magna(R2 ) 0.96).

For all three species, the most important descriptor was
log P, followed byELUMO. Hermens group concluded38 that
pollutants with high logP, low ELUMO, and high absolute
charges, i.e., electronegative hydrophobic chemicals with
charged atoms, are highly toxic. Q+ seemed to be more
important than Q- (which was used in the model #19, Table
1). However, from models #20-22, it is not clear that a
hydrogen bond is actually involved. This study,38 together
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with other studies carried out by the same group,39,40indicates
that more chemicals than those recognized as class 1 act by
the same mode of action attributed to class 1 chemicals.
Therefore, Hermens and co-workers suggested that the
definition of baseline toxicity based on logP should be
redefined based on membrane-water partition coefficients
(log KMW)38 and used a data set of 11 class 2 and eight class
1 compounds to test this suggestion.39 Plots of toxicity versus
log P distinguish classes 1 and 2, but this distinction
disappears when toxicity is plotted against logKMW (R2 )
0.98 after the removal of quinoline, a significant outlier).
Recently, Hermens group reported that for class 2 chemicals
the partitioning behavior to phospholipids is higher than to
octanol, whereas no difference is observed for class 1.41

Models (#23-26) in the final section of Table 1 do not
include log P as a descriptor but use mainly theoretical
molecular descriptors to predict the toxicity. Gombar and
Enslein (#23), who found it difficult to calculate some log
P values, produced a three-descriptor correlation from a
regression analysis using 23 topological, polarizability, and
atomic charge descriptors (R2 ) 0.80) to determine toxicity
without using logP.42 Their data set (#23) comprised 48
chlorobenzenes, chloroanilines, and chlorophenols and was
described by the first-order shape index, effective polariz-
ability, and the sigma atomic charges. Bru¨ggemann and co-
workers applied TLSER parameters to correlate the acute
toxicities for Photobacterium phosphoreumto a set (#24)
of 80 chlorinated organic compounds included narcosis I,
narcosis II, and specifically acting toxins.43 They found that
molecular volume was the most important parameter, fol-
lowed by the dipolarity/polarizability term and the basic
electrostatic term. They also found better correlations for
describing subsets of the compounds.43

Todeschini et al. applied weighted holistic invariant
molecular (WHIM) descriptors to analyze (#25) the EC50

toxicity to Daphnia magnafor 49 compounds:44 seven
descriptors covered 81% of variance in the current diverse
set of compounds.

Interesting work (#26) by Abraham et al. utilized linear
free energy relationship (LFER) analysis to model Overton’s
original data on tadpole narcosis.45 The solute excess molar
refraction, solute dipolarity/polarizability, the solute hydrogen-
bond basicity, and solute volume gave remarkably good
results (#26) for the set of 84 compounds. Evidently, the
solute hydrogen-bond basicity markedly reduces the solute
narcotic activity and solute excess molar refraction (some-
what) and solute volume (greatly) increases the solute
narcotic activity, as previously found with smaller sets.

AIMS AND OBJECTIVE OF THE PRESENT WORK

As can be seen from Table 1, logP has almost always
been used as an anchor descriptor for QSAR estimations of
toxicity, except for correlations #23-26. In conjunction with
log P, other descriptors correct for electronic interactions
with the surrounding media. The majority of these descriptors
are obtained from semiempirical (all use AM1 parametriza-
tion) quantum chemical calculations, particularly positive/
negative partial charges, and bond orders. More extensive
treatments have utilized HOMO/LUMO energies, and various
modifications of these energies, in the form of reactivity
indexes. Reactivity indexes were particularly useful for the

analysis of data sets that include reactive and specifically
acting compounds. The correlations of Table 1 generally use
experimentally determined values of logP, with some
exceptions where theoretical values were used to fill the gaps
in available experimental values. The success of the treat-
ments utilizing theoretical molecular descriptors (Table 1:
#23-25) encouraged us to look for the correlations for the
toxicities of classes 1-4 compounds using only theoretically
derived descriptors.

In recent years, we have worked extensively on the
development of methodology for a general QSAR/QSPR
approach and its applications. Our current approach is coded
as the CODESSA software package. CODESSA combines
diverse methods for quantifying the structural information
about the molecule with advanced statistical analysis to
establish molecular structure-property/activity relationships.
CODESSA enables the calculation of a large number of
quantitative descriptors based solely on the molecular
structural information46-48 and codes this chemical informa-
tion into mathematical form. CODESSA has been applied
successfully to predict a variety of physical, chemical, and
biological properties of compounds,49 ranging from boiling
points to complex properties of surfactants and polymers.
The current work is also encouraged by our QSAR analysis
of genotoxicity of aromatic and heteroaromatic amines,50

which provided a successful QSAR model using only
theoretically derived descriptors.

In the current study we exclude experimentally determined
log P values from estimations of toxicity and utilize solely
structure-based descriptors. We have gathered structure based
theoretical descriptors into a large database and have derived
QSAR models for the toxicities of each of the classes (1-
4) of toxic compounds. The primary purpose of the present
work is to establish QSAR models of aquatic toxicities for
a diverse set of classes (1-4) compounds.

DATA SET AND METHODOLOGY

The data set for classes 1, 2, 3, and 4 toxins contains 293
compounds (Table 2) with toxicity data (LC50) and experi-
mentalP values forPoecilia reticulatathat were obtained
from several sources. Items 1-161 were taken from a
compilation by Ramos, Vaes, Verhaar, and Hermens,38

compounds 162-242 from an earlier paper by Verhar et al.,21

the substituted phenols, 242-254, from Saarikoskis paper,51

and the remaining data from another paper from the same
group.22 Our total set included 90 class 1 compounds, 121
class 2 compounds (amines, anilines, phenols, and nitroaro-
matics, several of which approached class 3 toxins in Verhar
scheme,21 51 class 3 compounds (epoxides, aldehydes,
miscellaneous halogen containing compounds with the
halogens positioned alpha to vinyl or carbonyl groups, and
aromatic nitriles or phenols with four or more halogen
substituents), and 31 class 4 specifically reacting chemicals
(mostly phosphates or sulfates).

The molecular structures from the data set (Table 2) were
drawn and preoptimized using the MM+ molecular mechan-
ics method included in HyperChem (version. 5.1).52 Final
structural optimizations were performed using AM153 pa-
rametrizations and eigenvector following geometry optimiza-
tion procedure54 within the semiempirical quantum-chemical
program MOPAC 6.0.55 Gradient norms of 0.01 kcal/Å were
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Table 2. Data Set

no. class structure name Logc LC50exp. Loga LC50 ∆a Logb LC50 ∆b logPexp logPC

1 1 1,1,1-trichloroethane 3.00 2.71 -0.29 2.30 -0.70 2.49 2.25
2 1 1,1,2,2-tetrachloroethane 2.23 2.16 -0.07 1.77 -0.46 2.39 2.60
3 1 1,1,2-trichloroethane 2.82 2.72 -0.10 1.98 -0.84 1.89 2.24
4 1 1,1-dichloroethane 3.31 3.27 -0.04 2.63 -0.68 1.79 1.88
5 1 1,2,3,4-tetrachlorobenzene 0.65 0.43 -0.22 0.86 0.21 4.64 4.28
6 1 1,2,3,5-tetrachlorobenzene 0.57 0.43 -0.15 0.86 0.29 4.65 4.29
7 1 1,2,3-trichlorobenzene 1.11 1.13 0.02 1.27 0.16 4.13 3.76
8 1 1,2,3-trichloropropane 2.45 2.24 -0.21 1.70 -0.75 1.98 2.69
9 1 1,2,4,5-tetrachlorobenzene 0.15 0.42 0.27 0.84 0.69 4.6 4.29

10 1 1,2,4-trichlorobenzene 1.17 1.12 -0.05 1.25 0.08 4.05 3.77
11 1 1,2-dichlorobenzene 1.60 1.83 0.23 1.74 0.14 3.43 3.23
12 1 1,2-dichloroethane 3.06 3.27 0.21 2.55 -0.51 1.48 1.88
13 1 1,2-dichloropropane 3.01 2.80 -0.21 2.27 -0.74 1.98 2.33
14 1 1,2-ethanediol 5.90 6.07 0.17 5.11 -0.79 -1.36 -1.30
15 1 1,3,5-trichlorobenzene 1.26 1.11 -0.15 1.24 -0.02 4.18 3.78
16 1 1,3-dichlorobenzene 1.72 1.82 0.10 1.73 0.01 3.52 3.24
17 1 1,3-dichloropropane 2.87 2.80 -0.07 2.21 -0.66 2.00 2.33
18 1 1,4-dichlorobenzene 1.44 1.82 0.38 1.71 0.27 3.44 3.24
19 1 1,4-dimethoxybenzene 2.93 2.72 -0.21 2.36 -0.57 2.03 2.07
20 1 1-butanol 4.37 4.30 -0.07 3.80 -0.57 0.88 0.82
21 1 1-chlorobutane 3.02 2.90 -0.12 2.52 -0.50 2.64 2.41
22 1 1-decanol 1.19 1.49 0.30 1.92 0.73 4.57 3.50
23 1 1-dodecanol 0.74 0.56 -0.18 1.22 0.48 5.13 4.39
24 1 1-hexanol 2.98 3.36 0.38 3.25 0.27 2.03 1.72
25 1 1-nonanol 1.60 1.96 0.36 2.27 0.67 4.26 3.06
26 1 1-octanol 2.02 2.43 0.41 2.61 0.59 3.00 2.61
27 1 1-undecanol 0.79 1.02 0.23 1.57 0.78 4.53 3.95
28 1 2-(2-ethoxyethoxy)ethanol 5.30 5.01 -0.29 3.93 -1.37 -0.54 -0.71
29 1 2,2,2-trichloroethanol 3.31 3.55 0.24 2.67 -0.64 1.42 1.02
30 1 2,3,4-trimethoxyacetophenone 2.92 2.53 -0.39 2.24 -0.68 1.63 1.51
31 1 2,4,5-trichlorotoluene 0.94 0.66 -0.28 0.71 -0.23 4.78 4.21
32 1 2,4-dichloroacetophenone 1.8 1.87 0.07 1.03 -0.77 2.73 2.74
33 1 2,4-dichlorotoluene 1.46 1.36 -0.10 1.14 -0.32 4.24 3.68
34 1 2,6-dimethoxytoluene 2.13 2.26 0.13 2.02 -0.11 2.87 2.51
35 1 2-butanone 4.65 4.45 -0.20 3.26 -1.39 0.29 0.66
36 1 2-butoxyethanol 3.92 4.19 0.27 3.54 -0.38 0.83 0.50
37 1 2-decanone 1.57 1.64 0.07 1.54 -0.03 3.73 3.34
38 1 2-ethoxyethanol 5.26 5.12 -0.14 4.16 -1.10 -0.1 -0.39
39 1 2-hydroxy-4-methoxyacetophenone 2.52 2.65 0.13 2.08 -0.44 1.98 1.82
40 1 2-isopropoxyethanol 4.72 4.65 -0.07 3.96 -0.76 0.05 0.06
41 1 2-methoxyethanol 5.36 5.59 0.23 4.43 -0.93 -0.77 -0.84
42 1 2-methyl-2,4-pentanediol 4.96 4.19 -0.77 4.37 -0.59 -0.68 0.49
43 1 2-octanone 2.45 2.57 0.12 2.17 -0.28 2.37 2.45
44 1 2-phenoxyethanol 3.40 3.34 -0.06 2.82 -0.58 1.16 1.34
45 1 2-propanol 5.16 4.76 -0.40 4.27 -0.89 0.05 0.38
46 1 2-xylene 2.52 2.30 -0.22 1.97 -0.55 3.12 3.06
47 1 3,3-dimethyl-2-butanone 2.94 3.52 0.58 3.18 0.24 1.20 1.55
48 1 3,4-dichlorotoluene 1.40 1.36 -0.04 1.14 -0.26 4.06 3.68
49 1 3-chlorotoluene 2.16 2.06 -0.10 1.64 -0.52 3.28 3.15
50 1 3-furanmethanol 3.72 3.95 0.23 2.96 -0.76 0.3 0.91
51 1 3-methyl-2-butanone 4.01 3.98 -0.03 3.21 -0.81 0.84 1.11
52 1 3-pentanol 4.05 3.83 -0.22 3.62 -0.43 1.21 1.27
53 1 3-pentanone 4.26 3.98 -0.28 3.04 -1.22 0.85 1.11
54 1 3-xylene 2.55 2.30 -0.25 1.97 -0.58 3.20 3.06
55 1 4-chlorotoluene 1.67 2.06 0.39 1.63 -0.04 3.33 3.15
56 1 4-methyl-2-pentanone 3.71 3.51 -0.20 2.92 -0.79 1.31 1.55
57 1 4-xylene 2.52 2.30 -0.22 1.97 -0.55 3.15 3.06
58 1 5-nonanone 2.34 2.11 -0.23 1.81 -0.53 2.97 2.89
59 1 6-methyl-5-hepten-2-one 2.84 2.73 -0.11 2.18 -0.66 1.82 2.28
60 1 acetone 5.10 4.92 -0.18 3.69 -1.41 -0.24 0.21
61 1 acetophenone 3.13 3.29 0.16 2.15 -0.98 1.58 1.67
62 1 benzene 2.91 3.23 0.32 3.09 0.18 2.13 2.17
63 1 benzophenone 1.93 1.05 -0.88 1.19 -0.74 3.18 3.84
64 1 butyldigol 3.85 4.08 0.23 3.29 -0.56 0.56 0.18
65 1 chlorobenzene 2.23 2.52 0.29 2.32 0.09 2.89 2.71
66 1 chloroform 2.93 3.19 0.26 2.41 -0.52 1.97 1.79
67 1 cyclohexanol 3.85 3.60 -0.25 3.18 -0.67 1.23 1.45
68 1 cyclohexanone 3.73 3.75 0.02 2.59 -1.14 0.81 1.29
69 1 dibutyl ether 2.40 2.42 0.02 2.24 -0.16 3.21 2.62
70 1 dichloromethane 3.54 3.75 0.21 2.59 -0.95 1.25 1.43
71 1 diethyl ether 4.46 4.28 -0.18 3.58 -0.88 0.87 0.84
72 1 diethyleneglycol 5.76 5.96 0.20 4.94 -0.82 -1.3 -1.62
73 1 diisopropyl ether 2.96 3.35 0.39 3.22 0.26 1.52 1.73
74 1 dipentyl ether 1.31 1.48 0.17 1.57 0.26 4.04 3.52
75 1 diphenyl ether 1.38 1.35 -0.03 1.47 0.09 4.21 3.57
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Table 2 (Continued)

no. class structure name Logc LC50 exp. Loga LC50 ∆a Logb LC50 ∆b logPexp logPC

76 1 ethanol 5.44 5.23 -0.21 4.29 -1.15 -0.31 -0.07
77 1 furan 2.96 3.58 0.62 3.03 0.07 1.34 1.70
78 1 hexachloroethane 0.81 1.04 0.23 1.53 0.72 4.14 3.33
79 1 iso-butanol 4.29 4.30 0.01 3.96 -0.33 0.76 0.82
80 1 methanol 5.94 5.70 -0.24 4.56 -1.38 -0.77 -0.52
81 1 pentachlorobenzene -0.15 -0.26 -0.11 -0.38 -0.23 5.18 4.80
82 1 pentachloroethane 1.74 1.61 -0.13 1.42 -0.32 3.22 2.96
83 1 t-butanol 4.68 4.29 -0.39 4.21 -0.47 0.35 0.83
84 1 t-butylmethyl ether 3.91 3.81 -0.10 3.64 -0.27 0.94 1.29
85 1 tetrachloroethene 1.98 2.34 0.36 1.56 -0.42 3.40 2.41
86 1 tetrachloromethane 2.64 2.63 -0.01 2.65 0.01 2.83 2.16
87 1 tetrahydrofuran 4.48 4.52 0.04 3.26 -1.22 0.47 0.58
88 1 toluene 2.87 2.77 -0.10 2.28 -0.59 2.78 2.61
89 1 trichloroethene 2.58 2.89 0.31 1.32 -1.26 2.61 2.06
90 1 triethyleneglycol 5.65 5.85 0.20 4.73 -0.92 -1.24 -1.94
91 2 1,2-dimethylpropylamine 3.51 3.30 -0.21 3.54 0.03 1.10 1.37
92 2 1,3-dihydroxybenzene 2.96 2.53 -0.43 2.94 -0.02 0.80 1.15
93 2 1-adamantaneamine 2.22 2.06 -0.16 1.41 -0.81 1.44 2.80
94 2 1-amino-2-propanol 4.52 4.58 0.06 4.47 -0.05 0.96 -0.76
95 2 1-methylheptylamine 1.60 1.89 0.29 2.42 0.82 2.82 2.71
96 2 1-naphthanol 1.50 1.47 -0.03 1.61 0.11 2.84 2.83
97 2 2-(2-butoxyethoxy)ethanol 3.85 3.81 -0.04 3.29 -0.56 0.56 0.18
98 2 2,2-dimethylpropylamine 3.74 3.41 -0.33 3.67 -0.07 1.19 1.36
99 2 2,3,4,5-tetrachloroaniline 0.19 0.61 0.42 0.24 0.05 4.56 3.13

100 2 2,3,4,5-tetrachlorophenol 0.48 0.40 -0.08 0.29 -0.19 4.21 3.76
101 2 2,3,4-trichloroaniline 0.85 1.22 0.37 0.59 -0.26 3.68 2.61
102 2 2,3,5,6-tetrachloroaniline 0.07 0.63 0.56 0.20 0.13 4.46 3.13
103 2 2,3,5,6-tetrachlorophenol 0.74 0.41 -0.33 0.25 -0.49 3.88 3.77
104 2 2,3,5-trichlorophenol 1.08 0.89 -0.19 1.01 -0.07 3.58 3.25
105 2 2,3,6-trichloroaniline 1.27 1.18 -0.09 0.56 -0.71 3.32 2.61
106 2 2,3,6-trichlorophenol 1.44 0.94 -0.50 0.97 -0.47 3.77 3.25
107 2 2,3,6-trimethylphenol 1.79 1.72 -0.07 2.26 0.47 2.92 2.99
108 2 2,3-dichloronitrobenzene 1.34 1.66 0.32 1.15 -0.19 3.05 3.09
109 2 2,3-dimethylnitrobenzene 1.61 1.93 0.32 1.53 -0.08 2.83 2.92
110 2 2,4,5-trichloroaniline 1.08 1.10 0.02 0.58 -0.50 3.69 2.62
111 2 2,4,5-trichlorophenol 0.80 0.89 0.09 0.65 -0.15 3.80 3.25
112 2 2,4,6-tribromophenol 1.30 0.47 -0.83 -0.75 -2.05 3.92 4.07
113 2 2,4,6-trichlorophenol 1.06 0.96 -0.10 0.96 -0.10 4.03 3.26
114 2 2,4-dichloroaniline 1.59 1.70 0.11 1.02 -0.57 2.91 2.09
115 2 2,4-dichloronitrobenzene 1.54 1.57 0.03 1.13 -0.41 3.09 3.10
116 2 2,4-dichlorophenol 1.41 1.45 0.04 1.78 0.37 3.17 2.72
117 2 2,4-dimethylphenol 2.14 1.93 -0.21 2.49 0.35 2.30 2.54
118 2 2,5-dichloroaniline 1.01 1.67 0.66 1.36 0.35 2.92 2.09
119 2 2,5-dichloronitrobenzene 1.41 1.60 0.19 1.14 -0.27 2.90 3.10
120 2 2,5-dichlorophenol 1.42 1.39 -0.03 1.76 0.34 3.06 2.72
121 2 2,6-dichlorophenol 1.68 1.45 -0.23 1.74 0.06 2.84 2.72
122 2 2,6-diisopropylaniline 1.94 1.29 -0.65 1.23 -0.71 3.18 3.70
123 2 2,6-dimethylphenol 2.25 2.12 -0.13 2.54 0.29 2.36 2.54
124 2 2-allylphenol 2.04 2.12 0.08 2.16 0.12 2.55 2.83
125 2 2-aminoethanol 4.54 4.71 0.17 4.58 0.04 -1.31 -1.21
126 2 2-chloro-4-methylphenol 2.40 1.86 -0.54 2.09 -0.31 2.65 2.63
127 2 2-chloro-4-nitroaniline 2.07 1.60 -0.47 1.07 -1.00 2.06 2.14
128 2 2-chloro-6-nitrotoluene 1.48 1.74 0.26 0.96 -0.52 3.09 3.00
129 2 2-chloroaniline 1.69 2.24 0.55 2.23 0.54 1.9 1.56
130 2 2-chloronitrobenzene 2.28 2.00 -0.28 1.67 -0.61 2.24 2.56
131 2 2-chlorophenol 1.94 2.00 0.06 2.61 0.67 2.24 2.19
132 2 2-ethylaniline 2.79 2.66 -0.13 2.19 -0.60 1.93 1.92
133 2 2-methoxyethylamine 3.84 4.54 0.70 4.15 0.31 -0.67 -0.74
134 2 2-methylaniline 2.88 2.68 -0.20 2.58 -0.31 1.32 1.47
135 2 2-methylphenol 2.23 2.34 0.11 2.71 0.48 1.95 2.10
136 2 2-nitroaniline 1.85 2.15 0.30 2.09 0.24 1.85 1.60
137 2 2-nitrotoluene 2.41 2.28 -0.13 1.76 -0.65 2.30 2.47
138 2 2-phenylphenol 1.24 1.00 -0.24 1.71 0.47 3.09 3.56
139 2 2-tert-butyl-4-methylphenol 1.10 1.40 0.30 1.87 0.77 3.80 3.88
140 2 3,3-dimethylbutylamine 3.78 3.01 -0.77 3.34 -0.44 1.72 1.81
141 2 3,4,5-trichlorophenol 0.92 0.89 -0.03 0.66 -0.26 4.28 3.24
142 2 3,4-dichloroaniline 1.61 1.65 0.04 1.04 -0.57 2.69 2.09
143 2 3,4-dimethylnitrobenzene 1.79 1.83 0.04 1.33 -0.46 2.91 2.92
144 2 3,4-dimethylphenol 2.08 1.96 -0.12 2.52 0.44 2.23 2.55
145 2 3,5-dichloroaniline 1.38 1.62 0.24 1.02 -0.36 2.90 2.10
146 2 3,5-dichloronitrobenzene 1.42 1.48 0.06 1.12 -0.30 3.13 3.10
147 2 3,5-dichlorophenol 1.22 1.37 0.15 1.76 0.54 3.63 2.73
148 2 3-benzyloxyaniline 1.66 1.70 0.04 1.03 -0.63 2.77 2.88
149 2 3-chloroaniline 2.02 2.19 0.17 2.20 0.18 1.88 1.56
150 2 3-chloronitrobenzene 1.99 1.95 -0.04 1.65 -0.34 2.46 2.57
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Table 2 (Continued)

no. class structure name Logc LC50 exp. Loga LC50 ∆a Logb LC50 ∆b logPexp logPC

151 2 3-chlorophenol 1.70 1.92 0.22 2.59 0.89 2.59 2.19
152 2 3-ethylaniline 2.35 2.47 0.12 2.17 -0.18 1.88 1.92
153 2 3-methoxyphenol 2.78 2.76 -0.02 2.60 -0.18 1.58 1.61
154 2 3-methylaniline 2.53 2.65 0.12 2.58 0.05 1.44 1.47
155 2 3-methylphenol 2.52 2.41 -0.11 2.73 0.21 1.96 2.10
156 2 3-nitroaniline 2.76 2.20 -0.56 2.05 -0.71 1.37 1.61
157 2 3-nitrophenol 1.93 2.54 0.61 2.44 0.51 2.00 1.52
158 2 3-nitrotoluene 2.35 2.28 -0.07 1.75 -0.60 2.42 2.47
159 2 4-(n-methoxymethyl)aminophenol 3.73 3.71 -0.02 2.86 -0.87 0.48 0.21
160 2 4-amino-2-nitrophenol 2.36 2.36 0.00 2.72 0.36 0.96 1.09
161 2 4-bromoaniline 2.44 1.93 -0.51 1.41 -1.03 2.26 1.83
162 2 4-butylaniline 1.84 1.91 0.07 1.52 -0.32 3.05 2.81
163 2 4-chloro-2-nitrotoluene 1.56 1.74 0.18 1.16 -0.40 3.05 3.01
164 2 4-chloro-3,5-dimethylphenol 1.34 1.59 0.25 1.58 0.24 3.45 3.08
165 2 4-chloro-3-methylphenol 1.67 1.91 0.24 2.09 0.42 3.10 2.63
166 2 4-chloroaniline 2.33 2.13 -0.20 2.46 0.13 1.88 1.56
167 2 4-chloronitrobenzene 1.58 1.93 0.35 1.62 0.04 2.39 2.57
168 2 4-chlorophenol 1.82 1.92 0.10 2.58 0.76 2.39 2.19
169 2 4-decylaniline -0.58 -0.35 0.23 -0.43 0.15 6.09 5.49
170 2 4-ethoxy-2-nitroaniline 2.15 2.06 -0.09 1.71 -0.44 2.38 2.00
171 2 4-ethylaniline 2.48 2.51 0.03 2.16 -0.32 1.92 1.92
172 2 4-ethylphenol 1.93 2.26 0.33 2.33 0.40 2.58 2.55
173 2 4-hexyloxyaniline 1.22 1.11 -0.11 1.13 -0.09 3.64 3.21
174 2 4-methoxyphenol 2.95 2.75 -0.20 2.81 -0.14 1.34 1.61
175 2 4-methylaniline 2.28 2.54 0.26 2.57 0.29 1.39 1.47
176 2 4-methylphenol 2.26 2.32 0.06 2.72 0.46 1.94 2.10
177 2 4-n-butylphenol 1.53 1.67 0.14 1.70 0.17 3.56 3.44
178 2 4-nitroaniline 2.77 2.07 -0.70 1.70 -1.07 1.39 1.60
179 2 4-nitrophenol 2.01 2.53 0.52 2.11 0.10 1.96 1.52
180 2 4-nitrotoluene 2.33 2.16 -0.17 1.74 -0.59 2.37 2.47
181 2 4-nonylphenol -0.2 -0.27 -0.07 0.10 0.30 6.21 5.67
182 2 4-n-pentylphenol 0.88 1.22 0.34 1.40 0.52 4.09 3.89
183 2 4-octylaniline -0.23 -0.48 -0.25 0.24 0.47 5.03 5.59
184 2 4-phenoxyphenol 1.42 1.53 0.11 1.99 0.57 3.35 3.06
185 2 4-phenylazophenol 0.76 0.97 0.21 1.08 0.32 3.96 3.32
186 2 4-propylphenol 1.91 1.84 -0.07 2.00 0.09 3.20 3.00
187 2 4-tert-butylphenol 1.54 1.78 0.24 2.12 0.58 3.31 3.44
188 2 4-t-pentylphenol 1.19 1.32 0.13 1.73 0.54 3.83 3.89
189 2 amylamine 3.31 2.84 -0.47 3.28 -0.03 1.49 1.36
190 2 aniline 3.09 2.74 -0.35 3.17 0.08 0.94 1.03
191 2 benzylamine 2.98 2.94 -0.04 2.63 -0.35 1.09 1.48
192 2 butylamine 3.56 3.27 -0.29 3.55 -0.01 0.97 0.92
193 2 decylamine 0.82 0.86 0.04 1.64 0.82 4.10 3.59
194 2 dodecylamine -0.27 0.07 0.34 0.94 1.21 5.16 4.49
195 2 ethylamine 3.70 4.17 0.47 4.08 0.38 -0.13 0.02
196 2 heptylamine 2.28 2.02 -0.26 2.65 0.37 2.57 2.26
197 2 hexylamine 2.75 2.44 -0.31 2.96 0.21 2.06 1.81
198 2 N,N-dimethylaniline 2.67 2.86 0.19 2.19 -0.48 2.31 1.94
199 2 nitrobenzene 3.03 2.50 -0.53 2.35 -0.68 1.85 2.03
200 2 nonylamine 1.18 1.23 0.05 1.99 0.81 3.57 3.15
201 2 octylamine 1.60 1.64 0.04 2.32 0.72 3.04 2.70
202 2 pentafluoroaniline 2.31 1.95 -0.36 2.87 0.56 1.86 1.48
203 2 phenol 2.55 2.51 -0.04 3.34 0.79 1.46 1.66
204 2 propylamine 3.72 3.69 -0.03 3.81 0.09 0.48 0.47
205 2 quinoline 2.37 2.62 0.25 1.04 -1.33 2.03 1.78
206 2 s-butylamine 3.58 3.60 0.02 3.65 0.07 0.74 0.92
207 2 t-octylamine 2.28 2.19 -0.09 3.07 0.79 2.69 2.71
208 2 tridecylamine -0.46 -0.33 0.13 0.59 1.05 5.10 4.93
209 2 undecylamine 0.09 0.45 0.36 1.30 1.21 4.63 4.04
210 2 R,R,R,4-tetrafluoro-2-methylaniline 2.22 2.23 0.01 2.53 0.31 2.51 1.88
211 2 R,R,R,4-tetrafluoro-3-methylaniline 2.23 2.23 0.00 2.49 0.26 2.51 1.89
212 3 1,2,7,8-diepoxyoctane 1.67 1.38 -0.29 1.97 0.30 1.18 0.99
213 3 1,2-epoxybutane 2.66 2.36 -0.30 3.07 0.41 0.76 0.63
214 3 1,2-epoxydecane 1.32 1.54 0.22 1.23 -0.09 3.94 3.31
215 3 1,2-epoxydodecane 0.78 1.20 0.42 0.53 -0.25 5.00 4.20
216 3 1,2-epoxyhexane 2.27 2.19 -0.08 2.53 0.26 1.82 1.52
217 3 1,2-epoxyoctane 1.91 1.89 -0.02 1.90 -0.01 2.88 2.41
218 3 1,3-butadienediepoxide 1.49 1.70 0.21 3.09 1.60-0.48 -0.80
219 3 1,3-dichloropropene 0.66 0.50 -0.16 1.25 0.59 1.41 2.16
220 3 1,4-dichloro-2-butene -0.16 0.65 0.81 1.42 1.58 1.94 2.61
221 3 1-chloro-2,4-dinitrobenzene -0.19 -0.05 0.14 1.16 1.35 2.20 2.42
222 3 1-chloro-2-butene 1.82 1.24 -0.58 2.02 0.20 2.05 2.25
223 3 2,2′-dichlorodiethyl ether 2.54 2.09 -0.45 2.16 -0.38 1.81 1.56
224 3 2,3,4,6-tetrachlorophenol 0.67 0.82 0.15 0.25 -0.42 4.45 3.77
225 3 2,3-dichloropropene 1.01 0.25 -0.77 1.38 0.37 1.99 2.16

1168 J. Chem. Inf. Comput. Sci., Vol. 41, No. 5, 2001 KATRITZKY ET AL .



used to calculate electronic, geometric, and energetic pa-
rameters for the isolated molecules. After optimization, the

CODESSA program was used to calculate five types of
molecular descriptors: constitutional, topological, geometri-

Table 2 (Continued)

no. class structure name Logc LC50 exp. Loga LC50 ∆a Logb LC50 ∆b logPexp logPC

226 3 2,4,R-trichlorotoluene 0.08 0.01 -0.07 0.41 0.33 3.87 4.04
227 3 2,5-dinitrophenol 1.00 0.87 -0.13 2.07 1.07 1.75 1.37
228 3 2-butenal 0.90 1.94 1.04 2.55 1.65 0.20 0.50
229 3 2-ethylbutanal 1.89 1.72 -0.17 2.72 0.83 1.49 1.56
230 3 2-furaldehyde 2.04 2.04 0.00 2.63 0.59 0.81 1.47
231 3 2-methylpropanal 2.57 2.51 -0.06 3.26 0.69 0.43 0.66
232 3 2-s-butyl-4,6-dinitrophenol 0.17 0.08 -0.09 0.93 0.76 3.33 3.16
233 3 3,4,5,6-tetrachloro-2-hydroxyphenol 1.00 0.78 -0.22 1.00 0.00 4.29 3.24
234 3 3,4,5-trichloro-2,6-dimethoxyphenol 1.12 0.93 -0.19 1.34 0.22 3.74 3.13
235 3 3,4,5-trichloro-2-methoxyphenol 1.03 1.01 -0.02 0.89 -0.14 3.77 3.19
236 3 3-chloro-1-butene 1.85 1.25 -0.60 2.04 0.19 1.93 2.25
237 3 3-cyclohexene-1-carboxaldehyde 1.01 1.21 0.20 1.90 0.89 1.34 1.57
238 3 3-methylbutanal 2.19 2.18 -0.01 3.07 0.88 0.96 1.11
239 3 4,5-dichloro-2-methoxyphenol 1.40 1.52 0.12 1.24 -0.16 3.26 2.67
240 3 4-dinitrobenzylbromide -0.30 -0.54 -0.24 0.36 0.66 2.41 3.08
241 3 allyl chloride 1.20 1.04 -0.16 2.02 0.82 1.53 1.80
242 3 benzaldehyde 1.57 1.40 -0.17 2.69 1.12 1.49 1.95
243 3 benzyl chloride 0.49 0.75 0.26 1.60 1.11 2.48 2.97
244 3 butanal 2.28 2.41 0.13 3.05 0.77 0.53 0.66
245 3 chloroacetone 0.88 1.58 0.70 2.63 1.75 0.45 0.57
246 3 cyclohexanecarboxaldehyde 1.91 1.32 -0.59 2.29 0.38 1.68 1.73
247 3 decanal 1.31 1.28 -0.03 1.47 0.16 3.71 3.34
248 3 epibromohydrin 0.77 1.06 0.29 1.86 1.09 0.38 0.79
249 3 epichlorohydrin 0.85 1.58 0.73 2.53 1.68 0.58 0.54
250 3 ethanal 2.90 2.73 -0.17 3.20 0.30 -0.53 -0.23
251 3 glycidol 2.83 2.74 -0.09 3.85 1.02 -0.92 -1.05
252 3 heptanal 1.89 1.83 -0.06 2.38 0.49 2.12 2.00
253 3 hexachlorobutadiene -0.20 0.17 0.37 -0.04 0.16 4.63 3.84
254 3 hexanal 1.99 2.03 0.04 2.65 0.66 1.59 1.56
255 3 methanal 2.96 2.82 -0.14 2.97 0.01 -0.75 -0.67
256 3 octanal 1.79 1.66 -0.13 2.09 0.30 2.65 2.45
257 3 pentachlorophenol 0.22 0.20 -0.02 0.04 -0.18 5.15 4.28
258 3 pentanal 2.18 2.22 0.04 2.88 0.70 1.06 1.11
259 3 propanal 2.41 2.61 0.20 3.22 0.81 0.00 0.22
260 3 propylene oxide 2.74 2.53 -0.21 3.38 0.64 0.23 0.18
261 3 styrene oxide 1.77 1.72 -0.05 1.82 0.05 1.43 1.63
262 3 R,R-dichloro-m-xlyene -0.16 0.05 0.21 0.84 1.00 2.87 3.78
263 4 1,3-dinitrobenzene 1.75 1.57 -0.18 2.04 0.29 1.53 1.89
264 4 4-hexylresorcinol 0.72 1.33 0.61 1.55 0.83 4.10 3.82
265 4 8-hydroxyquinoline -0.99 0.37 1.36 1.49 2.48 2.12 1.27
266 4 acrylamide 2.69 1.92 -0.77 3.17 0.48 -1.04 -1.10
267 4 allyl alcohol 1.16 1.70 0.54 3.32 2.16 -0.03 0.21
268 4 azinphos-methylc -0.74 -0.44 0.30 -0.94 -0.20 2.76 1.80
269 4 bromophosc 0.09 -0.29 -0.38 -0.45 -0.54 5.21 4.49
270 4 chlorothionc -0.19 0.78 0.97 0.68 0.87 3.63 3.01
271 4 cyanophosc 1.75 1.08 -0.67 0.96 -0.79 2.71 2.34
272 4 decamethrinc -2.34 -2.16 0.18 -3.28 -0.94 4.40 6.22
273 4 dicapthonc 0.43 0.46 0.03 0.44 0.01 3.72 3.02
274 4 dieldrinc -1.78 -2.16 -0.38 -2.52 -0.74 5.30 5.12
275 4 disulfiramc -1.65 -1.85 -0.20 -1.04 0.61 3.88 4.11
276 4 ethyl acrylate 0.87 0.91 0.04 2.36 1.49 0.88 1.17
277 4 etrimfosc 1.09 1.10 0.01 1.34 0.25 3.67 2.23
278 4 fenitrothionc 1.00 0.70 -0.30 0.75 -0.25 3.47 3.47
279 4 fenthionc 0.89 0.38 -0.51 0.02 -0.87 4.17 4.01
280 4 fluoroacetamide 2.88 2.17 -0.71 3.70 0.82 -1.04 -1.28
281 4 iodofenphosc 0.32 -0.51 -0.83 -0.65 -0.97 5.51 4.73
282 4 lethanec 0.76 0.78 0.02 1.18 0.42 1.68 0.90
283 4 lindane -0.69 -0.50 0.19 -0.39 0.30 4.14 4.85
284 4 methidathionc -0.96 -0.29 0.67 -0.15 0.81 2.50 1.24
285 4 methylisocyanothion 0.23 0.00 -0.23 1.95 1.72 3.58 1.39
286 4 methylparathionc 0.61 1.28 0.67 1.35 0.74 3.04 2.48
287 4 phenthoatec -0.99 -1.07 -0.08 -0.86 0.13 3.96 4.29
288 4 phosmetc -0.12 -0.24 -0.12 -0.79 -0.67 2.81 1.84
289 4 proclonolc 0.01 -0.64 -0.65 -0.77 -0.78 5.50 5.48
290 4 ronnelc 0.00 -0.09 -0.09 0.13 0.13 5.07 4.22
291 4 rotenonec -0.84 -0.68 0.16 -1.16 -0.32 3.95 3.07
292 4 thiomedonc 1.53 1.52 -0.01 1.60 0.07 -1.87 -0.77
293 4 R-endosulfanc -2.74 -2.39 0.35 -2.53 0.21 3.83 2.47

a Predicted with equations from Table 3A-D. b Predicted with general equation (Table 3E); all concentrations in logµmol/L. c Structures of
compounds are provided in the Supporting Information.
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cal, electrostatic, and quantum-chemical.47,56 Up to 941
descriptors (the precise number depended on the atomic
constitution of the molecule) were calculated for each
structure in the seven sets studied. The best multilinear
regression (BMLR) procedure47,57,58was used to select the
best two-parameter regression model; the best multiparameter
regression models were selected based on the highestR2

value in a forward stepwise regression procedure.59 The
correlation equations were constituted from the selected
noncollinear descriptors according to the maximum value
of the Fisher criteria and the highest cross-validated cor-
relation coefficient (R2

cV).46,47,58

Considering logP has been an anchor descriptor in QSAR
toxicity analysis (particularly of narcotic toxins), we incor-
porated logPC into our pool of descriptors. Calculated values
of log P were determined using the molecular size based
approach of Bodor et al.60 implemented in the QLogP
software package. These calculated values of logP are listed
along with the experimental values in Table 2. The QLogP
program combines the 3D molecular size with a parameter
(N) that indicates the number and types of polar functional
groups.61 TheN value roughly correlates with the hydrogen
bonding capability of the molecule. The QLogP program
provides reliable calculated values for logP, thus eliminating
any dependence on experimental data. Indeed we found a
good correlation (R2 ) 0.91) between the experimental and
calculated logP values for the 293 structures used in this
study (see Supporting Information for plot).

The latest version of QlogP (2.01 beta) was used for the
calculations. The program was modified by Peter Buchwald
to allow Mopac output files to be directly calculated rather
than first converting the structures to an alternative format.
The QlogP program was originally optimized for structures
produced by Alchemy, which uses slightly different bond
length constants than Mopac. As a result, the phosphorus/
sulfur bonds of the Mopac optimized structures were not
properly recognized. Structures with P-S bonds were
converted to HyperChem input files, and the geometry of
(only) the P-S bonds was minimized using MM+. The
resulting structures were properly identified by QlogP and
provided high quality logP values.

RESULTS AND DISCUSSION

For the 90 class 1 compounds the best correlation equation
derived had two parameters (R2 ) 0.9551, Figure 1 and Table
3A). The model is dominated by logPC, which in a single-
parameter correlation has a coefficient ofR2 ) 0.9307. The
additional descriptor used for the two-parameter correlation,
difference in third-order charged partial surface areas
(DPSA-3), is related to the positive and negative charge
distribution and the respective surface areas and can correct
for slight polarities in class 1 compounds. The results for
class 1 compounds clearly follow previous findings with log
P as the dominant contributor. The prominence of logP in
the correlation for class 1 compounds is not surprising
considering that these toxins are defined as substances which
follow the baseline toxicity model.

Table 4 gives the correlation of each toxin class with log
PC. The class 2 compounds only follow the baseline
moderately so that toxicity trends can be predicted. Class 3
and class 4 toxins have poor correlations to logP, which

illustrates the need for improved correlations for predicting
toxicity. As stated earlier, there is often an overlap between
classes, and since some class 1 compounds possess some
degree of polarity, the remaining descriptor serves as a
correction.

The best five-parameter correlation equation for the 121
class 2 compounds hadR2 ) 0.9184 (Figure 2 and Table
3B). According to thet-test values, the most important
descriptor is again logPC, which alone describes the 79%
of the variance. The strong appearance of logP in the
correlation is supported by therelatiVe negatiVe charge. The
descriptor reflects the way in which the most highly charged
negative atom is related to overall negative charge of the
molecule (charge of most negative atom/sum of total negative
charge). The descriptor indicates how evenly the negative
charge is distributed in the molecule and can be related to
the polar behavior of class 2 compounds. The third descriptor
stresses the importance of hydrogen bonding capability in
the prediction of toxicity for class 2 compounds. This fact
deviates somewhat from the current opinion that the toxicity
of class 2 compounds should depend only on polar interac-
tions and hydrophobicity. The appearance of a hydrogen
bonding parameter reveals that the classes can overlap and
that class 2 compounds can have other important interactions
besides polar. Thefractional hydrogen donor charged
surface areais the surface area multiplied by the corre-
sponding partial charge of the compound that is capable of
donating a hydrogen in an interaction with the environment.
The descriptor takes into account all of the hydrogen atoms
in the compound that have a net atomic charge higher than
0.185. The resulting sum is then divided by the total of the
partial surface areas of those hydrogen atoms. The remaining
descriptors,XY shadowandYZ shadow, are calculated from
their respective projection of the shadows on the 2D plane
according to the orientation in the space. They are the natural
shadow indexes and reflect the relationship of the size of
the class 2 molecules with the acute toxicity and are therefore
reflecting the importance of nonspecific interaction on class
2 compounds.

Again, there is an overlap of classes and several of the
class 2 structures could arguably be switched into class 3.
The results of class 2 are largely as expected but also show
some new trends. Alongside logPC, the additional descriptors
are related to polar attractions, hydrogen bonding, and the

Figure 1. Class 1 toxins: two-parameter equation for 90 data
points.
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size of the molecule. The last three terms are important
because class 2 chemicals are attracted to the phospholipid
head of the cell membrane which results in a higher
accumulation of the chemical in the cell membrane, thus

producing a higher narcotic effect than would be predicted
by log P alone.

For the 51 class 3 compounds, the five-parameter cor-
relation equation withR2 ) 0.8510 is considered to be the

Table 3. Correlation Equations

X DX R2 S2 t-test descriptors

A: Class 1 Toxins, Two-Paramater Equation (Figure 1)
0 5.4262e+ 00 1.0152e- 01 53.4488 intercept
1 -9.5096e- 01 2.2531e- 02 0.9307 0.1469 -42.2067 logPC
2 -3.9252e- 02 5.7175e- 03 0.9551 0.0964 -6.8652 DPSA-3 difference in CPSAs (PPSA3-PNSA3) [Zefirov’s PC]

0.9520 R2
cv

0.9552 validation

B: Class 2 Toxins, Five-Parameter Equation (Figure 2)
0 5.5586e+ 00 3.3452e- 01 16.6169 intercept
1 -7.7786e- 01 4.2801e- 02 0.7918 0.2109 -18.1736 logPC
2 -3.1694e+ 00 4.3840e- 01 0.8237 0.1350 -7.2294 RNCG relative negative charge (QMNEG/QTMINUS) [semi-MO PC]
3 -1.6815e+ 01 2.7092e+ 00 0.8690 0.1801 -6.2067 FHDCA fractional HDCA (HDCA/TMSA) [semi-MO PC]
4 -3.0729e- 02 5.2077e- 03 0.9022 0.1017 -5.9005 XY shadow
5 3.3784e- 02 7.0597e- 03 0.9184 0.0855 4.7855 YZ shadow

0.9083 R2
cv

0.9083 validation

C: Class 3 Toxins, 5-Paramater Equation (Figure 3)
0 5.1611e- 01 4.8257e- 01 1.0695 intercept
1 3.4085e+ 00 3.5674e- 01 0.3870 0.5128 9.5545 FPSA-1 fractional PPSA (PPSA-1/TMSA) [Zefirov’s PC]
2 -8.3705e- 02 1.0429e- 02 0.5568 0.2248 -8.0265 number of single bonds
3 -1.6196e- 01 2.6434e- 02 0.7423 0.3785 -6.1271 final heat of formation/# of atoms
4 -9.7312e- 01 2.0651e- 01 0.8048 0.1740 -4.7123 average information content (order 0)
5 -6.8854e+ 00 1.8425e+ 00 0.8510 0.1357 -3.7370 min partial charge (Qmin) [Zefirov’s PC]

0.8201 R2
cv

0.8286 validation

D: Class 4 Toxins, Four-Paramater Equation (Figure 4)
0 1.1803e+ 00 3.1761e- 01 3.7163 intercept
1 -2.9870e- 02 2.7621e- 03 0.4316 1.0526 -10.8142 ALFA polarizability (DIP)
2 -9.9238e+ 00 1.5529e+ 00 0.5651 0.8342 -6.3904 FNSA-3 fractional PNSA (PNSA-3/TMSA) [semi-MO PC]
3 1.2302e- 01 1.9287e- 02 0.7351 0.5269 6.3787 count of H-donors sites [Zefirov’s PC]
4 9.2159e- 01 2.0913e- 01 0.8484 0.3132 4.4067 number of benzene rings

0.7745 R2
cv

0.6740 validation

E: Combined Classes 1, 2, 3, and 4 Toxins, Seven-Paramater Equation (Figure 5)
0 1.0588e+ 01 6.6201e- 01 15.9942 intercept
1 -9.1219e- 01 1.1202e- 01 0.4840 1.0649 -19.0652 Kier & Hall index (order 1)
2 1.0981e+ 00 4.7801e- 01 0.6509 0.7230 9.8026 topographic electronic index (all pairs) [Zefirov’s PC]
3 -4.2188e+ 00 4.7764e- 01 0.6871 0.6504 -8.8326 average structural information content (order 1)
4 -4.5212e+ 00 6.4418e- 01 0.7219 0.5799 -7.0185 av bond order of a C atom
5 -1.6695e- 02 2.9377e- 03 0.7577 0.5071 -5.6831 complementary information content (order 1)
6 -1.6170e+ 00 2.8528e- 01 0.7871 0.4472 -5.6681 min net atomic charge
7 3.2016e+ 00 9.4810e- 01 0.7953 0.4315 3.3769 HACA-2/SQRT(TMSA) [semi-MO PC]

0.7834 R2
cv

0.7834 validation

F: Combined Classes 1 and 2 Toxins, Six-Paramater Equation (Figure 6)
0 -1.6859e+ 01 2.2906e+ 00 -7.3602 intercept
1 -9.0189e- 01 2.0836e- 02 0.8279 0.2935 -43.2848 logPC

2 2.4579e+ 01 2.3402e+ 00 0.8538 0.2506 10.5028 max sigma-sigma bond order
3 -4.4841e- 01 4.6057e- 02 0.8803 0.2060 -9.7360 average information content (order 1)
4 -1.2806e- 01 1.3414e- 02 0.8970 0.1783 -9.5466 HA dependent HDSA-2 [semi-MO PC]
5 -2.9038e+ 00 3.3371e- 01 0.9218 0.1359 -8.7015 molecular volume/XYZ box
6 2.6633e+ 01 3.5049e+ 00 0.9391 0.1064 7.5988 HACA-1/TMSA [Zefirov’s PC]

0.9340 R2
cv

0.9362 validation

G: Combined Classes 1, 2, and 3 Toxins, Eight-Parameter Equation (Figure7)
0 6.7685e+ 00 2.3961e- 01 28.2478 intercept
1 -8.4498e- 01 3.1644e- 02 0.6281 0.6223 -26.7028 LogPC

2 -2.3431e+ 01 1.0118e+ 00 0.6720 0.4777 -12.9011 max sigma-pi bond order
3 -1.2475e+ 00 1.1780e- 01 0.7167 0.4341 -10.5904 max bond order of a C atom
4 -7.2412e- 01 7.0311e- 02 0.7435 0.4276 -10.2989 number of N atoms
5 -1.5384e- 01 2.2262e- 02 0.7483 0.3034 -6.9103 Kier flexibility index
6 -8.3394e- 02 1.5722e- 02 0.7519 0.4232 -5.3044 RPCS relative positive charged SA (SAMPOS*RPCG) [Zefirov’s PC]
7 7.4607e- 01 1.4966e- 01 0.8228 0.2847 4.9850 FPSA-2 fractional PPSA (PPSA-2/TMSA) [semi-MO PC]
8 3.2480e- 02 7.7193e- 03 0.8344 0.5442 4.2077 PNSA-3 atomic charge weighted PNSA [Zefirov’s PC]

0.8183 R2
cv

0.8255 validation
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most satisfactory (Figure 3 and Table 3C). Removal of the
outlier, 2-butenal, gives an improvedR2 of 0.8713. Signifi-
cantly, logPC was not among the five descriptors, which is
a further indication of the difference between class 3 toxins
and the narcotic toxins. There is a high probability that the
effect of logPC is averaged to zero because of the variety
of modes of action possible within a data set. This does not
necessarily mean that hydrophobic interaction is no longer
important. While logP is certainly still important, it is no
longer the best descriptor, and other descriptors should be
applied for the description of hydrophobicity in such sets of
compounds.

The fractional partial positiVe surface area(FPSA -
partial positive surface area weighted by total molecular
surface area) reflects positive charge distribution in the
molecule through the respective surface area. It shows how
charge is distributed in the molecule relative to the total
surface area of the molecules. This descriptor can be loosely
related to hydrogen bonding capability and reactivity as well.
The next descriptor,number of single bonds, has a negative
coefficient. This is reasonable since less aliphatic molecules
are typically more reactive. Thefinal heat of formation/# of
atoms is a quantum chemical descriptor that quantifies

reactive bonds in the molecule. TheaVerage information
content (zeroth order)accounts for the diversity of the atomic
constitution of the compounds. Because the descriptor is
zeroth order, it does not describe branching. Instead, the
descriptor simply groups the atoms into distinct classes that
reflect the complexity of the molecule. Theminimum partial
charge (Qmin)divides the data set into the three main
reactive groups: aldehydes, Michael acceptors, and epoxides.

Due to the variety of different modes of action, the class
3 compounds are less easy to interpret than classes 1 or 2.
Our data set of 51 compounds contains many examples with
the same functional group but varying in chain length. This
may distort the results and attribute a more than realistic
significance to the size and the content of specific atoms.
This is evidenced by the minimum partial charge descriptor.
If we treat the class 3 compounds in a combined group with
class 1 and 2 (see the following text), the larger number of
molecules blurs the presence of the specific functional
groups. None of the reactivity indices were shown to be
significant in the correlation, but this is not surprising
considering that the indices calculated by CODESSA indicate
the reactivity at specific atomic sites rather than overall
reactivity, and the particular reactive atomic site varies
throughout the data set. We find that reactivity indices
specific to a particular atomic species, i.e., the reactivity
indices in the current version of CODESSA, are inadequate
for predicting overall reactivity. If new descriptors, similar
to the parameter (N) used in the calculation of QlogP, were
developed, they could possibly indicate the presence of
highly reactive functional groups and thus predict the
expected high toxicity. Unfortunately, such descriptors would
have the same shortcomings as classification rules, and only
recognized functional groups would be predicted accurately.
An alternate approach would utilize descriptors based on the
magnitudes of rate constants for particular electrophiles and
nucleophiles; such an approach was used successfully by
Hermens.18

The four-parameter correlation equation for the 31 class
4 compounds (Figure 4 and Table 3D) consists of one
constitutional, one quantum chemical, and two electrostatic
descriptors. Thealfa polarizability represents the effect
(polarization) on a molecule produced by an external electric
field in a medium and therefore reflects the interaction
between the medium and the embedded molecule.62 It has
been shown that polarizability values are related to the
hydrophobicity and that the higher order polarizability terms
characterize the electrophilic properties of the molecule.56

Table 4. Correlation of Each Toxin Class with logPC

R2 coefficient F

class 1 0.9307 -0.956 1182.7
class 2 0.7918 -0.778 452.6
class 3 0.4727 -0.465 43.9
class 4 0.3494 -0.411 15.57

Figure 2. Class 2 toxins: five-parameter equation for 121 data
points.

Figure 3. Class 3 toxins: five-parameter equation for 51 data
points.

Figure 4. Class 4 toxins: four-parameter equation for 31 data
points.
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The third-order fractional partial negatiVe charged surface
area (FNSA-3)shows the negative charge distribution on
the respective surface area and is normalized by the total
molecular surface area. The charge distribution is calculated
from AM1 parametrization and can be related to the
hydrogen acceptor ability of the molecule. Thecount of
H-donors sites [ZefiroV’s PC] distinguishes the molecules
according to the number of hydrogen donor sites that are
capable of donating a hydrogen to the surrounding media.
The number of benzene ringsdistinguishes the molecules
with 1 and 2 benzene rings from other molecules and shows
their different behavior. The occurrence of this descriptor is
consistent with our previous work50 where we showed that
the number of rings is a major determinant of mutagenicity
(genotoxicity) for aromatic and heteroaromatic amines. Also
Hatch and Colvin63 recently found that the mutagenicity of
aromatic and heterocyclic amines depends mainly on the size
of the aromatic ring system. Both studies conclude that the
size of the ring system can affect the mutagenicity at various
steps of the mechanism, but it most likely affects the
penetration through the biomembranes.

The interpretation of the class 4 toxins is also difficult.
The descriptors found are either indicators of reactivity or
hydrogen bonding and bulk effects. However, the relevancy
of some of the descriptors is probably affected by the small
size of the data set. Because of this, the equation should only
be used to predict the toxicity of structures similar to those
in the training set. Benzene rings frequently occur in
biologically active materials because they can align with the
active sites of many enzymes, thus their presence can easily
be expected to contribute to site-specific toxicity. Hydrogen
bonding is also frequently a factor in enzyme substrate
binding. The unsatisfactory quality of our model for predict-
ing toxicities of class 4 compounds is primarily due to the
variety of different modes of action that occur with the
compounds in the data set. Despite this, the descriptors in
the model represent the reactive and site-specific (interactions
related to hydrogen bonding and bulk) properties of the
compounds.

The best overall correlation equation for the full set of
293 compounds (Figure 5 and Table 3E) involved seven
descriptors (R2 ) 0.7953). TheKeir and Hall Index(first
order) describes the valence connectivity of the molecule of
the first order (coordination sphere). TheaVerage structural
information content (first order)andcomplimentary informa-
tion content (first order) reflect the branching of the

molecule; also at the first coordination sphere. The last two
descriptors are defined on the basis of the Shannon informa-
tion theory. The calculated value for each molecule reflects
how information rich the molecule is. “Information rich”
describes how many different atoms there are in the molecule
and how diverse the branching of these atoms is at the first
valence level (coordination sphere). In essence, both descrip-
tors give us information concerning how many atoms with
similar connectivity patterns are in the molecule. TheaVerage
structural information contentalso depends on the number
of atoms in the molecule, and it arranges the molecules in
the order of compound size.64 The descriptor may be thought
of as a normalized information content, with the maximum
information content as the normalization factor. Thecom-
plimentary information contenttakes into account the devia-
tion of information content from the maximum information
content. In other words, it represents the difference between
the maximum possible complexity of a graph and the realized
topological information of the chemical species as defined
by the information content.65

A quantum chemical descriptor,aVerage bond order of a
C atom, reflects the hybridization and functional groups
connected to the carbon skeleton and thus are loosely related
to reactivity. Charge distribution is directly accounted for
by the topographic electronic index (all pairs)using the
charge distribution scheme described by Zefirov and co-
workers,66 andminimum net atomic chargeis obtained from
the Mulliken charge distribution scheme of quantum chemical
calculations. The remaining descriptorHACA-2/SQRT(T-
MSA)shows the H-bond acceptor capabilities as well as the
negative charge distribution. The descriptor considers all
amino, cyano, hydroxyl, carbonyl, carboxyl, thiol group, and
aromatic nitrogen atoms. It sums the products of every partial
surface area and its respective partial charge. The sum is
normalized using the square root of total molecular surface
area. The descriptor excludes nitrogen atoms connected to
oxygen, double-bonded sulfur atoms, or COO groups.

When the toxicities of individual classes are calculated
using this global correlation equation, we getR2 values of
0.8705, 0.7894, 0.6326, and 0.7042 for classes 1, 2, 3, and
4, respectively. Considering the complexity of the data set,
it is hard to expect any general conclusion regarding the
mechanism of mutagenicity. However the model does
indicate that hydrogen bonding and charge distribution are
important factors for toxicity. The model also shows that
topological descriptors are useful in the description of large
and diverse data sets. The model can still be used to estimate
trends in toxicity even if they do not explicitly show chemical
structural trends that can be related to the toxicity.

Correlations were also performed to predict the toxicity
of combined sets: classes 1 and 2 and classes 1, 2, and 3. A
six-parameter correlation (Table 3F, Figure 6) was chosen
for its ability to predict either a combined group of classes
1 and 2 toxins (R2 ) 0.9391) or only class 1 toxins (R2 )
0.9578) or only class 2 toxins (R2 ) 0.8998). The logPC

was the most important descriptor. The quantum chemical
descriptor, max sigma-sigma bond orderdescribes the
valency of the molecule and particularly the presence of the
functional groups in the molecule. The descriptor has its
lowest value for tetrachloromethane and its highest value
for 2,6-diisopropylaniline; arranging the molecules according
to the sigma-sigma bonding contribution in the molecule.

Figure 5. Combination of all toxin classes: seven-parameter
equation for 293 data points.
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TheaVerage information content (order 1)is similar to the
constitutional descriptors in the overall model. It considers
the branching of the molecule through the similarity of
connectivity patterns on the molecular graph. The two
electrostatic descriptors,hydrogen bond acceptor dependent
hydrogen bond donor surface area (HDCA-2)andhydrogen
bond acceptor charged surface area/total molecular surface
area (HACA-1/TMSA), describe the hydrogen bonding ac-
ceptor and donor properties of the compounds, respectively.
Finally, the equation was supported by the geometrical
descriptormolecularVolume/XYZ box,which describes the
bulk related properties and, by normalizing the descriptor
with a unit box, shows how compact the molecule is.

The correlation of the combined set of 261 structures
composed of classes 1, 2, and 3 toxins resulted in an eight-
parameter equation (Table 3G) withR2 ) 0.8344. The log
PC values were a significant descriptor for the combined set.
This is not unexpected considering the majority of the data
set consisted of classes 1 and 2 toxins. The quantum chemical
descriptors,max sigma-pi bond orderand maximum bond
order of a carbon,both indicate reactivity.Max sigma-pi
bond order covers the different reactive properties of
epoxides in comparison with other compounds dividing data
set into two different groups.Maximum bond order of a
carbonaccounts for the different behavior of purely aliphatic
compounds from aromatic systems and compounds that have
at least one full double bond. The constitutional descriptor,
number of N atoms,results from the large number of amines
in the data set. The descriptor divides the data set into
three groups, with zero, one, and two nitrogen(s) in
compound. The final topological descriptor,Kier flexibility
index, describes the shape of the molecule. The three
electrostatic descriptors,RPCS relatiVe positiVe charged SA
(SAMPOS*RPCG) [ZefiroV’s PC], FPSA-2 molecule weighted
fractional positiVe charged surface area,andPNSA-3 atomic
weighted partial negatiVe surface areadescribe the charge
distribution in the molecule. They can be loosely related to
the hydrogen bonding acceptor and donor ability and also
to the reactivity.

The individual and combined narcotic sets produced results
that are consistent with the work of Ramos et al.38 The class
1 toxins can be predicted by logP. The occurrence of the
DSPA-3descriptor was interesting and may correct for minor
differences between experimental and calculated logP values
as well as demonstrate overlap between the classes 1 and 2.
The class 2 toxins can be predicted by logP, polarity, and

hydrogen bonding descriptors. The descriptors used in the
equation for predicting the combined classes 1 and 2 sets
are similar to those used in the equation for class 2 toxins.
The dominant descriptor is logP, and the additional
descriptors are related to hydrogen bonding, bulk, and the
compounds’ polarity.

All correlations described in this study were cross-
validated using internal validation sets. In each case, the full
set of structures was divided into three groups: structures
1, 4, 7, etc. formed group I, structures 2, 5, 7, etc. formed
group II, and structures 3, 6, 8, etc. formed group III. Groups
I and II were then combined to form set A, groups II and III
to form set B, and groups I and III to form set C. The
descriptors used in the original correlation equation were
saved to a descriptor set labeled “verify”.

Correlations were performed on set A, set B, and set C
each using the same verify descriptor set. The partition
coefficients of the descriptors for sets A, B, and C were
recorded. The toxicities for group III were then predicted
using the descriptor partition coefficients from set A (gener-
ated from groups I and IIssee above), group I was predicted
using the partition coefficients from set B, and group II
toxicities were predicted using the partition coefficients from
set C. The toxicities calculated from groups A, B, and C
were combined, and a correlation was then performed
between them and the experimental toxicity values. The
resultingR2 values were then compared to theR2 values from
the original correlations. The cross-validationR2 values were
close to the originalR2 values (Table 3) for correlations for
classes 1 and 2 and the combined sets. The validations were
acceptable for classes 3 and 4 toxins. The poorer validation
results for classes 3 and 4 can be attributed to the small data
sets.

CONCLUSIONS

The present work represents an initial attempt to correlate
toxicities using only calculated descriptors. This would make
it possible to avoid the problems mentioned earlier concern-
ing classification rules. It has been shown, in this study and
others, that accurately describing the toxicity of class 1 and
2 compounds with a single correlation is quite feasible. The
reason is that the mode of action is the same, a reversible
accumulation of the toxin within the cell membrane that
results in distortion and disruption of function. The correla-
tions and conclusions, resulting from this study, are in strong
agreement with work performed by Ramos et al.38 A
significant advantage to the correlations produced in this
study is that they are completely independent from experi-
mental data, which allows toxicities to be calculated for any
structure that can be drawn.

The correlations for class 3 toxins were moderately
successful, but the predictions are limited to the types of
functional groups found in the data set. The ability to predict
class 3 toxins using a single correlation is difficult since there
are many possible modes of action within an organism.
Additionally, the differences in toxicity from one species to
another can be large since the toxicity mode may or may
not vary between the organisms. Reasonable correlations can
be found for a given species if the class 3 compounds are
subcategorized by reaction type. Descriptors for electrophi-
licity may prove to be an indicator of toxicity class as well

Figure 6. Class 1 and 2 toxins combined: six-parameter equation
for 211 data points.
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as the degree of toxicity. Unfortunately, the relationship
between toxicity and electrophilicity is limited by the
environment; once electrophilicity increases beyond a point
the substance will likely react with other nucleophiles before
reaching any organisms.

The correlation that was developed for a combined set of
classes 1, 2, and 3 is not accurate enough to be able to assign
toxicity values, especially for class 3 toxins, but it can be
used for predicting trends in toxicity. The correlation used
to predict the combined set of four classes was not very
satisfactory for predicting the individual classes, especially
for class 3 toxins. It is unlikely that any single equation can
be developed to accurately predict toxicities with such a great
variation in the modes of action.

The correlations for class 4 toxins will only be valid for
structures that are very similar to the insecticides used in
this study. Class 4 compounds with the same basic structure,
i.e., benzene with a variety of inert substituents, can be
predicted with some accuracy. Unfortunately, different
substituents can cause molecules with the same basic
structure to affect an organism by different modes of action,
which can lead to large errors in predicted toxicity. Ad-
ditionally, the substituent can sometimes become the most
reactive portion of the molecule, which will also lead to
invalid predictions.

The agreement between this work and work by others (see
introduction) is significant. The main approach up to now
has been to develop descriptors, based on the theoretical
mode of action of the toxin, to predict toxicities. Our
approach was to produce the best correlation possible from
an extremely large pool of descriptors and to determine later
whether the correlation can be justified by the theoretical
mode of action. The level of agreement between this study
and those performed by others is a strong indicator that the
narcosis mode of action can now be modeled satisfactorily.
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