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Projected Functions
Two point function in finite time path formalism
A(:E, y) = G)(:co)@(yg)ﬁ(m,y).
Retarded and advanced functions

Agr(z,y)) = ©(zo — %0)O(20)O(%0) A, v),

Aa(z,9)) = O(yo — 20)O(x0)O (o) A(z, y)-
Projected function
AP (z,y)) = O(20)O (yo) Az — ).
Projected retarded and advanced functions
Aga)(@,9)) = © (£(z0 — 10)) O(20)O(w0) Az — v),

Convolution product

[4 % B](z,y) == 0(20)0(0) [ dzod’zA(x, 2)B(z,9)-
Various convolution products projected functions:
[Ar * Bg](z,y) == ©(z0 — yﬁ)e(fCO)@(yo)fo

Convolution product of retarded projected functions is retarded projected
function; the product of advanced projected functions is advanced projected
function

To—Yo

dzod’z Az — y — 2)B(z).

[Aa* Ba)(2,y) = O(y0 — 20)O(20)O(30)

and the product of advanced projected function with retarded projected
function is retarded projected function

(A * Br)(2,9) = ©(20 — 90)0(20)0(w0) [ dzod’zA(2) Bz —y — 2).

The product of retarded projected function with advanced projected
function is not projected function

[Ag * Ba)(z,y) = (0 — 40)O(20)O(w0) [ dzed’zA( — 2)B(z — y)

Yo—<To

dzod’zA(—2)B(z — y + ),
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Two-Point Functions

Switching-on the interaction at ¢; = 0
"Two-point function G(z,y), transition to Wigner variables

(z,y), four-vectors 0 < zg, Yo < 00

)

(X,S), X2(1E+y)/2,8=23—‘y, 0<X0, — 22X < 59 < 2X)

s
5)
Fourier integral with respect to s, s; and the inverse:

(X +2,X = 2) = (2m)™ [ dpe 000G py, 7; X)

G(z,y) = G(X + g,X —

G(p(),ﬁ,X) — —?;,(5?0 dSO/dBSei(p(}sg—ﬁé')G(X 4 g,X -

S
2

)

Projection operator Px,(sg) = ©(2Xy — s0)0(2X + s¢)

2X, 00
f 2)?.0 dSU = /—oo dSOPXO(SU)

12X, ey Lsin (2Xo(po — p)))
1y [2Xo iso(Po—pp) — e -
PXU (o, Po) 91 1—2Xg dsoe 7 Po — Po

A Pxo(po, o) = 8(po — p)
[ S
Homogeneity in space coordinates < drop X dependence

Relation between the transforms at X with finite and infinite carrier

GXo(pO:@ - /_i); dp{)PXo(pUap‘(’])GOO(pf)aﬁ Xo)



Projected Functions
The projected function (PF) a very special two-point function:

Projected function does not depend on X, it is a function of (50, §) within
the interval —2X < sy < 2X| and identical to zero outside

Flz,y)=F(X+5 x -2

F(Sg,g) —2Xp < sy < 2X,
X )= (

0 sop < —2Xp or 2X, < s

Fourier transforms of projected functions (FTPF’s):
Foo(p()ym = /_O:; dSO [ dssei(pnso_ﬁg)F(So, §)

Fx,(po, ) = [ dplPx,(po, o) Foo (£, )

Notel: Fi, does not depend on X!
Note2: Fl, is determined by F, = F' describes reversible process!
Examples of projected functions:

poles in the energy plane

R, A, and K components of free propagators

R, A, and K components of one-loop self-energy

results of some convolutions and resummations

Analytic properties of projected functions in the Xy — oo limit:
Define RETARDED (ADVANCED) functions:

Foo(po) is retarded (advanced) function if it satisfies :
(1) the function of py is analytic above (below) the real axis,
(2) the function goes to zero as |p,| — oo in the upper (lower) semiplane

desirable: PF R(A)-components = R(A) functions
desirable: PF K-components = sum of R and A functions



+0(yo — 20)0(20)O(30) [ dzod’zA(z — 2)B(z — ).

The factors multiplying "Theta’s” cannot be writen in a form which depends
solely on = — y; thus the product Ag x B, contains two terms, of which one
is retarded and the other advanced function, but they are not projected
functions.



Propagator

Propagator in coordinate space (0 < zg, 0 < yo):
Retarded component

i o
e~ (=)

Grlw,y) = —Gi1+ Gy = [
R(:I:) y) 1,1_+ 2,1 /( pp2 __mg +22€p0

Keldysh component
Gr(z,y) =G+ Gy = fd4p27T6(p2 —m?)(1+ zf(wp))e—ip(i‘—y)

(Gg and G depend on s = x — y; vanish at zp < 0 or o < 0 = PF
Fourier transforms over infinite time interval:

—1

G _
Roo(P) p? —m? + 2iepg

Groo(p) = —(1+ 2f(wp)w, ! (p0GRroo(p) — PG ace(p))

Analyticity adoptions: (I. D. phys. Rev. D 59, 125012 (1999))

in wrong correct  alternative
Gr  sgn(po)e  poe
Gk sgn(po)  po/wp  wWp/Po

"¢’ parameter regulations:

the limit € — 0 should be taken last of all
specially lim x, 00 exp(—Xg€) = 0




Function sign(py, w,)

An identity:

i T 1 1
Sz — 7)) = —v(= — 2
(@—v) =N e~ sy —id 7O

where (1) = 1, analytic around z/y = 1. Generate next identity
7 1 1

5(p(2) - wﬁ) = %Sign(poawp)[ 2

P§ — wi + 2iepg PR — w? — 2iepg

]+ O(€?).

~ Instead of usual sign(pg) function, a new (user friendly) function
sign(po, wp), wWhich is an alternative between

3 3
. : Po Wp (Po (wp)
sign(pg, w,) = sign —,—,|— —=1 ...
tg (PO, p) s1g (po), wpa Po’ (wp) ’ Do )
sign(pg) usual, not recomended choice, nonanalytic at pyp = 0
Eﬁ default choice, for convergent integrals

EE reduces the power of py danger at py = 0.

For all offered possibilities , the function sign(py,w,) at py = £w,
reduces to sign(py) and the identity is valid. The choice of the
appropriate form of sign(pg, wp), should guarantee that in the
perturbative expansion integrals over py converge (in the way such,
that two terms in Eq. (??) Gk r and Gk 4 could be treated
separately) at |pg| = co and no additional singularities appear at
finite po (especially not at |pg| = 0), This choice might be different for
different terms. The difference between any two choices (when
multiplied by 8(p§ — w?)) is O(€®). In the absence of pathology this
difference vanishes in the € — 0 limit.

Having done proper choices one can integrate over pg as first. this
results in manifestly retarded (advanced) functions.



Convolution Product

The convolution product of two two-point functions:

C=A%xB <& (C(z,y) = fdzA:v 2)B(z,y)

for A and B Fourier transforms of projected functions:

+
Cx,(po, P) = [ dpordpozPx, (po, @"1-“2&)

1 e~ Xo(po1—po2+ie)

AOO b BOO b
27 Dot — Pog + i€ (Pm 15) (Poz ]3')

For A advanced or B retarded function product is FTPF!

Cx,(p0, ) = [ dpo1Px,(po, Po1) Aco(Po1, 7) Boo(por, )

Finite Xy smearing of energy preserves uncertainty relations

Xloiinoo CXo(pOa@ - Aoo(Po,ﬁ')Boo(po,@

general convolution product given by gradient expansion:
(note we assumed the homogeneity in space coordinates)

y 1
OXO(pOJm =€ OAX(}(pOJ@BXo(pO)@) <> - 5(6§06B aAaX())




Equal-Time Two-Point Functions

reduction of two-point functions to equal time two-point functions

To=1Y =1 <~ X0=t,80=0

obtained by inverse Wigner transform as

1
G(t, 0,}-)) = g/dp(}GXD:t(pD}ﬁ)

An example - average of number operator
< 2N(t) +1>= w,Gx(t,0,5) = =2 [ dpoGix(po,)
The case of bare fields
<F+1>=2 / dpoG%, x(p) = 1 + 2f(w,)

Right hand side time independent
Equal-time function from retarded WTPF ( sp = 0 < lim,,_, o)

1 .
GR(t:Os@ = 'i;/dpﬂcxo,ﬂ(ljﬂsﬂ
1
= o f dpo / dpo1 Px, (1o, P01)Goo,r (Po1, D)

1
= g/dpme,H(Pm,ﬁ) = const(p).

The integral over WTPF Gy, p does not change with time

Important but expected result: projected function determined by X, = +00; it cannot
describe irreversible processes.

non-WTPFs — byproduct of pinching.
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Elimination of Pinching in the Single
Self-Energy Insertion Approximation

The Keldysh component in the single self-energy insertion
approximation

GK - GKp,R + GKp,A + GK?"
Grpr = —i1Gr* Qr*Gr, Grpa=1GaxQax Gy
Gr, = h(GR — GA) +1GR * hXp * Ggr

——iGA *hEA * GA

where we have introduced short notation: € r(A) = hXRra) + Lr(a).
Gxp.r and G, 4 pinchlike contributions; Gk, free from pinching.
In full details 25 term (the dependence on p not shown):

Grpr=—1Gp*p* Gy

. Po1 + Po3
G xo, 169,k (Por B) = —i [ dpordpoadpos Px, (o, j—]—)GR(pm)
- »—1Xo(po1—po2-+i€) : ,—1X0(po2—po3ti€)
7€ _ 1 e
Qoo r(Po2) = G 4(po3)

2T po1 — Po2 + 1€ 27 Pog — Poz + L€

Integrate over pgs by closing the integration path from above. The
only singularity closed is situated at py; + i€ (note the care for €’s):

+
Po1 1003) Gr (

G xo,xp,8(P0, ) = —i | dpodposPxy(po, 5 po1)

i e~ Xo(po1—po3+2ie)

QOO,R(p(JI + 716)

—@
2T po1 — Po3 + 2u€ alpos)



Integrate over poz by closing the integration path from above. The
singularities closed are situated at pg; + 2i¢€ and at +w, + €.

GXO,Kp,R(pOJ ]5)
= —i [ dpo Pxy(po, po1) G r(P01) oo (P01 + 1€) G a(po1 + 2te)

1 - .
o [ dpn G r(po1) Qoo r(Po1 + t€)
Wp

1 pOl"'Awp e—iXo(pol—)\wp—l-z'e)

From the definitions of G and G4 one observes that

G a(po1 + 2i€) = Gr(po1) so that all the functions appearing in above
expression are retarded. There is no pinching in integration over py 1.
To pg can be safely given finite positive imaginary part and the pg
integral will be well defined. There is no pinching in the final
expression.

But we have got functions directly depending on time X i.e., the
non-FTPF functions, which one cannot convolute further in the
elegant way we were using here.

Finally

GX@,K(poa }3))
= 2Im ( f dpo1 Px, (po, P01) G r(P01)$ 200, R (P01 + 0€)G R(P01)

1 ~ :
—22— f dpo1GRr(po1)$2o m(P01 + i€)
Wp

1 + Iw,, . e~ Xolpor—Awp—ie)
X /\Z 1 A Px,(po, bor L

2 )p01—)\wp+z'e



it gives just the constant distribution function. In higher order of
perturbation expansion one expects that also the distribution
function changes with time. The above result tells us that it happens
only if there is non-FTPF contribution!

Now we come back to the result of cancellation of pinching, we add
Gg, to G Kp,R and G Kp A and obtain

Gx, (0, B) = 2Im ([ dpor P (po, por) G r(p01) 2o, (P01 + i€) G rlpo1)

1 - .
—22—_ f dpolGR(pm)Qoo,R(Pm + ?f—)
Wy

1 Do1 + Awy e—iX()(P01—)\wp—7:())

This expression is second order contribution to the generalized
distribution function. As we shall see by integration over po,

[ dpoGxq 5 (po, p) = 2Im ([ dparGr(Por)Qeo, k(P01 + 7€) G R(Po1)

e~ X001+ (cos Xow, + z% sin Xowp)) .

p
- thanks to the presence of non-FTpf the result depends on X.
The fact that FTPF do not contribute to Eq. (4.20), throws new light
on our approach: pinchlike contributions ( i.e. those containing
convolution products of both retarded and advanced components) are
necessary to obtain nontrivial time dependence. As this fact will
reappear in the other expressions (even calculation of retarded and
advanced compononts from two-loop or more complicated Feynman
diagrams we may conclude that indeed, the pinchlike expressions
represent " the body of evidence” that very important information 1s
left ”ill-defined” in the formulation using Keldysh time path.



1 —cos(pg — p)t
= dpoR( ) 4
( 27 / po R (po) (7o — )2 (14)

The connection is established by

R(po) = -1 M, <(po) As explained we prefer to use Keldy sh component
Im¥., i (po)/2 = —ImEq k,r(po). They are related by Lo = = =heofalia

3.1 Preliminaries

Note here that the presence of the term proportional to 1 in Eq. (13) is
optional. Indeed for this term one can close the integration contour from
above and find that it vanishes. But it simplifies the calculation. Even more,
as Soowr o |pol® as |p0| —» 20 in the case of ¢ — +, we can add "null”
terms up to the power p2. The choice 1 — .5sin 2pt(p? — pa)/p? improves the
behaviour of integrand near the singular points py = £p.

Owing to the factor e”# in (13) the integration over py cannot be per-
formed by closing the integration path from above. Instead we have to deform
the path and close it from below.

In doing so we obtain cut contribution coming solely from I m¥ which
is peaked near pg = £p. The factor [ ]| vanishes at po = =£p, thus the
contribution comes from the nearby region.

[1—e ™ (costp + 2 gin tp)] =1 — cospyt cos pt
)

o . . P . .
_Po sin pot sin pt — z(g—E cos pot sin pt — sin pot cos pt)
D P

=1-—cos(pp — p)t + ol sin pot sin pt

P— Do

—i[sin(p — po)t — cos pot siu pt]. (15)

Only real part contributes; as it is symmetric, only symetric part of 1 m¥p
(where we understand that by “symumetry” operation one remains on the
same side of the real axis) contributes (factor of 2 comes from the disconti-



3 Main Expressions

In the standard approach one starts with Eq. (7), applies to it either G7!
from the left, or G} from the right, then performs two gradient expansions
(to the order O ((0)?)) for two convolution products, adds and subtracts
the results, and obtains kinetic equations. These are solved by Dynamical
Renormalisation Group methods.

Our approach is more direct: as we can perform two convolution products
I an exact manner, we consider Eq. (7) as the solution of kinetic equations
and simplify it further.

We start with Eq. (6)

< Ny(t) >= 0 o
;’ fdpo[Gm(po P) — Go,x (po. P)]- (11)

Now we consult Eq. (4.11) from (ID3)

/ ApoGes(po. 1) = ~20m( [ dpoGoc,n(p0. 7

Boc 1P + i€, 7)o, n(po, pe o9

(cos tuw, + 172 sin tu,)]. (12)
@p
Thus
p < Ny(t) > dN (1) 2 p* > -
= — = - dpoIm (=X i r(po. D
(2??)?’ Dd'jpd'jl‘ 7‘_(2‘“_)3 2 /. Po ( OC.I\,R(I 0: .lj
: ,,1 ——[1 — 7" (costp + 2.10_0 sintp)] | . (13)
(P2 — p? + 2iepy)? P
Where we have decomposed £ to retarded and advanced part Ly = = —Y i+
S;\ 4. We have also introduced £ = Yknr + Er4. where LR.R(A) =
Err(ay — stgn(po. p)Zpey. We set here w = |p| = p.

To understand the W B paper we give their Eq. (10):

p < N; > _ dM(f)
Gy =V Ens

d
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Photon number density as a function of momentum
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0.4 GeV/c. Parametar T = 0.3 GeV. Quark masses
(v and d) are equal zero.



