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Heavy ion collisions at ultrarelativis-
tic energies - possibility to examine
the fundamental properties of QCD:
- asimptotic freedom

- deconfinement

- quarks and gluons - quasifree par-

ticles in experimental conditions (7)

= Model of quark-gluon plasma (QGP)

IS based on asimptotic freedom of QCD



QCD at high temperature and mat-
ter density:

- thermal field theory

- out of equilibrium field theory

Necessary for calculation of QGP prop-
erties - knowledge of the initial state

= Parton cascade models:

- parton collisions lead to forming of

hot plasma of quarks and gluons

- termalisation after 0.1 — 1 fm/c (?)

and hydrodynamic expansion



Emission of hadron particles follows

after rehadronisation and freeze-out

Possible phase coexistence: QGP and

hadronic phase (hadron gas, DCQC)

Photons and leptons: emited in all
phases of the collision, leave the plasma

without further interactions

= clean signals of QGP forming in

experiments



Photon production

Photon production in ultrarelativistic
heavy ion collision - standard approach

- different contributions:

- photons emited in hard parton in-
teractions similar to QCD Compton

scattering, anihilation, bremsstrahlung

- photons emited in quark-gluon col-
lisions in QGP

- photons emited by hadronic parti-

cles (79, p, w, ...) after rehadronisa-

tion



Model of photon production in out
of equilibrium field theory

- system is prepared at ¢; in initial
state

- at t; = 0 time evolution starts and
ends at ¢y

Time evolution defined along the con-

ture C'=C1 UC5 in complex plane




Time ordering T, is defined on the
conture C and equal to zero elsewhere

Averages of operators (density oper-
ator p)

(O(t)) = TrpO(t)
Two-point Green function

G(z,2") = —i( Tep(x)p(a") )

G(z,x") for t, t' on C = C;UC5» con-
nected with components of the Keldysh
space G;i(z,z") (i,7 =1,2)

Limit t; — —oo, ty — oo = nontriv-
lal connection with the Keldysh ap-
proach



Projected functions

Two-point function G(z,y) with four-
vector variables z, y, time components
inside the interval t; < xzg, yg < o0

Wigner variables

x+ vy
2 Y,

X = s=x—Yy

S S
Gla,y) = G(X +2,X = 2)

Lower boundary for xg, yg = 0 < X
and —2Xg < sg < 2Xg

The values of G(X + 5,X — 5) for
(X, s) not satisfying 0 < Xgand —2Xg <
sg < 2Xg are physically irrelevant



Definition of time ordering T, sets
them to zero outside intervals 0 < X,
—2Xg < 50 < 2Xp

G(X + 5,X — 5) is written using the

projection operator

G(X + 2, X =)
= 0(X0)0(2X0o — 50)0(2X0 + s0)

— S S

XG(X + =, X ——

(X +2,X )
Outside the carrier of the projection

operator values of G(X +35,X —3) are

arbitrary



Wigner transform of projected func-

tion - Fourier transform w.r.t. (sg, 5)

G(po, P, X)
= /d45 e!(Poso—PS) (X + S X — i)
2’ 2

S S

(277)4 [ d*p e 1050 G (pg, i, X)

Homogeneity in space coordinates ex-

—

cludes dependence on X



Projection operator has a simple trans-

form
Px,(po,Po)

2X -
_Q(XO)/ 0 dSO cs0(Po—pp)

sin (2Xo(po — pp))
PO — P

= %Q(Xo)

Important property for energy conser-

vation in the Ilimit Xg — oo

lim Py, (po, po) = 6(po — po)
Xp—00

For finite Xy (finite time) = energy

nonconservation



Function G(X + 3, X — 35) = G(s0,5)
follows from the projected function in

the limit Xg — oo

lim G(X —I— , X — —) = G/(s0, 5)

Xo—>OO

Important property of projected func-
tions = transform of the projection

operator induces X dependence

Gx,(po,P) = |Px,Goo| (po,P)

S0 —
= /_OO dpo Px, (Po; o) Goo(P0; P)



Important examples of projected func-
tions are retarded, avanced and Keldysh

component of free propagators

For further analysis analytic proper-
ties in the Xg — oo limit of Wigner
transforms of projected functions (WTPF)

are important

We define the following properties cor-
responding to R (A) components:
(1) function of pg is analytic above
(below) real axis

(2) function goes to zero as |pg| ap-
proaches infinity in the upper (lower)

semiplane



Convolution products of pro-
jected functions

C=A1%xA>*x...x A, 1% Ap

For convolution products of n pro-
jected functions it is important that
at least n — 1 functions satisfy as-
sumptions (1) and (2)

Order is also important: the retarded
functions should be on the right, the
avanced on the left, and the functions
neither avanced nor retarded in the
middle



If these conditions are fulfiled:

Cx,(po, D)

T
= [ dpo,1Pxo(po,p0,1) T Ajoo(po,1,7)
=1

= Convolution products of Wigner
transforms of projected functions are
Wigner transforms of projected func-
tions (WTPF)

But propagators and self-energies in
the Schwinger-Dyson equations ap-

pear in different order

= terms that are not WTPF appear

in Schwinger-Dyson equations



Schwinger-Dyson equations

Schwinger-Dyson equations for R, A

and K components of the propagator

Ga=GA+1Gax24xGYy

QK:GK—I—ZGR*ZK*QA

—|—7LGK>|<ZA>|<QA—|—2'GR*ZR*QK



Formal solutions for retarded and ad-

vanced component

Gr=Grx*(1—iZp*xGpr)1

Ga=Ga*(l—iZ 4 xGy) L

R and A components of the resummed
propagator are Wigner tranforms of
projected functions (WTPF)

Keldysh component of the resummed

propagator

Gk = Gr * (h(po,wp) (G — GR1)

+iX i) xGa



Keldysh component of self-energy does
not satisfy assumptions (1) and (2)

One-loop aproximation to >y can be

decomposed into parts satisfying (1)
and (2) as retarded and advanced func-

tions

2 Kk =—2KRT2KA

But Schwinger-Dyson equation for K
component of the propagator contains
retarded components on the left from
the advanced components

—= stepping out of the space of Wigner
transforms of projected functions (WTPF)



Equal time two-point func-
tions and opservables

To study single-particle opservables:
reduction of two-point functions to
equal time (g = yg =t = Xg = ¢,
sop = 0)

= it is obtained by inverse Wigner
transform

L 1 S
G(ta Oap — %/deGXo:t(p07p)

Average number of particles with im-
pulse p is connected to equal time K
component of the propagator

@Nx0) +1) = P [ dpoGi,i(po, B)



Other single-particle opservables are
generated with the help of (N5(t))

For projected functions and bare fields

W s
(2Np(1) +1) = 7 [ dptGrc,o0 (00, 7)

=14 2f(wp)

This is completely determined by its

form in the Xg — 400 limit



Equal time K component of the prop-
agator in the single self-energy inser-
tion aproximation G = G%+G}+. ..

(2Nz(t) + 1)
= (2N2(t) + 1) + 2NA(®) + ...

=14 2f(wp) + ;—W/deG:[L(,XO(P&ﬁ)

Time dependence of single-particle
opservables is described by equal time
two-point functions

All terms coming from W'TPF are con-
stants in time

= non-WTPF terms generate the time
dependence



Number of photons in QGP

Average photon number with impulse
p produced in QGP

dN(t)

(Np(t)) = (2 )3

w B y
= 4—p/dpo [D¢, k (po, P) — Do,k (Po, P)]
-

Assumption: initial state (at ¢; = 0)
contains no photons

"prompt” photons leave the medium



Phase space photon number density

dN(t) _ (Np(?))
d3pd3z  (27)3

dpoP

2 p /oo Im> o k. r(po, D)
m(2m)32 \ /=0 (p§ — 72)?

Kl—COS(pO—p)t - 2P0 gin g sin tp
p

1 ~
—|-27r—3 sin? tp > AReZw7K7R(Ap7ﬁ)
4p A==+1



Photon number density with vacuum contri-
bution (dashed line) and photon number den-
sity without vacuum contribution (full line)
vs. photon impulse p at ¢t = 10 fm/c. Pa-
rameter T is equal 0.2 GeV. Quark masses

(u i d) are set equal to zero.
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- photon number density is negative
at small impulse p < T (region where

resummation is necessary - HTL)

- at large impuse total photon num-

ber and energy are infinite

This is a consequence of the choice
of initial conditions: initial states are
eigenstates on the Fock space of non-
iInteracting hamiltonian

= regularization is necessary



Regularization

Problem of initial conditions: in one-
loop aproximation (order « in cou-
pling constant) total energy emited

through photon field is infinite

Without the formal solution, finite re-
sults at the order o« can be achieved,
by considering four basic types of QCD

plasma



1. vacuum plasma with intial quark
and antiquark distribution functions
equal to zero (f4 =0 and f_ = 0)
2. quark plasma with f4 # 0 and
f—-=0

3. antiquark plasma with f_ #= 0 and
f+=0

4. quark-antiquark plasma with

f+7#0and f_#0

For "bare” initial conditions all four
types of plasma emit infinite amount
of energy at the order a in the cou-

pling constant



Had we prepared " dressed” initial con-
ditions only quark-antiquark plasma
should emit photons at the order «
in the coupling constant

Quark-antiquark plasma contains other
three types of plasma and reduces on
them as special cases

By substracting these contributions
to average photon number regular-
ized expression is obtained which gives
finite total energy

Nf_|_,f_,7“€g(ﬁ7 t) — Nf_|_,f_ (ﬁ) t)

—Ny, 0P, 1) — No ¢ (P, t) + No,o(p, 1)



Regularized phase space photon number den-
sity for parameter T = 0.2 GeV and

t =10 fm/c vs. photon impulse
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- function is positive at small impulse

(p < T)

- function falls exponentially at large

impulse

= reqgularization gives finite total emited

photon energy



Regularized phase space photon number den-
sity for parameter T = 0.3 GeV and

t =10 fm/c vs. photon impulse
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Photon number density at p = 0.2 GeV/c vs.

time. Parameter T is equal 0.2 GeV.
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Photon number density at p = 0.02 GeV/c

vs. time. Parameter T is equal 0.2 GeV.
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