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Heavy ion collisions at ultrarelativis-

tic energies - possibility to examine

the fundamental properties of QCD:

- asimptotic freedom

- deconfinement

- quarks and gluons - quasifree par-

ticles in experimental conditions (?)

⇒ Model of quark-gluon plasma (QGP)

is based on asimptotic freedom of QCD



QCD at high temperature and mat-

ter density:

- thermal field theory

- out of equilibrium field theory

Necessary for calculation of QGP prop-

erties - knowledge of the initial state

⇒ Parton cascade models:

- parton collisions lead to forming of

hot plasma of quarks and qluons

- termalisation after 0.1 – 1 fm/c (?)

and hydrodynamic expansion



Emission of hadron particles follows

after rehadronisation and freeze-out

Possible phase coexistence: QGP and

hadronic phase (hadron gas, DCC)

Photons and leptons: emited in all

phases of the collision, leave the plasma

without further interactions

⇒ clean signals of QGP forming in

experiments



Photon production

Photon production in ultrarelativistic

heavy ion collision - standard approach

- different contributions:

- photons emited in hard parton in-

teractions similar to QCD Compton

scattering, anihilation, bremsstrahlung

- photons emited in quark-gluon col-

lisions in QGP

- photons emited by hadronic parti-

cles (π0, ρ, ω, . . .) after rehadronisa-

tion



Model of photon production in out

of equilibrium field theory

- system is prepared at ti in initial

state

- at ti = 0 time evolution starts and

ends at tf

Time evolution defined along the con-

ture C = C1 ∪ C2 in complex plane
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Time ordering Tc is defined on the

conture C and equal to zero elsewhere

Averages of operators (density oper-

ator ρ)

〈O(t)〉 = TrρO(t)

Two-point Green function

Gc(x, x′) = −i〈 Tcφ(x)φ(x′) 〉

Gc(x, x′) for t, t′ on C = C1 ∪ C2 con-

nected with components of the Keldysh

space Gij(x, x′) (i, j = 1,2)

Limit ti → −∞, tf → ∞ ⇒ nontriv-

ial connection with the Keldysh ap-

proach



Projected functions

Two-point function G(x, y) with four-

vector variables x, y, time components

inside the interval ti < x0, y0 < ∞

Wigner variables

X =
x + y

2
, s = x − y

G(x, y) = G(X +
s

2
, X − s

2
)

Lower boundary for x0, y0 ⇒ 0 < X0

and −2X0 < s0 < 2X0

The values of G(X + s
2, X − s

2) for

(X, s) not satisfying 0 < X0 and −2X0 <

s0 < 2X0 are physically irrelevant



Definition of time ordering Tc sets

them to zero outside intervals 0 < X0,

−2X0 < s0 < 2X0

G(X + s
2, X − s

2) is written using the

projection operator

G(X +
s

2
, X − s

2
)

= θ(X0)θ(2X0 − s0)θ(2X0 + s0)

×Ḡ(X +
s

2
, X − s

2
)

Outside the carrier of the projection

operator values of Ḡ(X+ s
2, X− s

2) are

arbitrary



Wigner transform of projected func-

tion - Fourier transform w.r.t. (s0, �s)

G(p0, �p, X)

=
∫

d4s ei(p0s0−�p·�s)G(X +
s

2
, X − s

2
)

G(X +
s

2
, X − s

2
)

=
1

(2π)4

∫
d4p e−i(p0s0−�p·�s)G(p0, �p, X)

Homogeneity in space coordinates ex-

cludes dependence on �X



Projection operator has a simple trans-

form

PX0
(p0, p′0)

=
1

2π
θ(X0)

∫ 2X0

−2X0
ds0 eis0(p0−p′0)

=
1

π
θ(X0)

sin
(
2X0(p0 − p′0)

)

p0 − p′0

Important property for energy conser-

vation in the limit X0 → ∞

lim
X0→∞PX0

(p0, p′0) = δ(p0 − p′0)

For finite X0 (finite time) ⇒ energy

nonconservation



Function Ḡ(X + s
2, X − s

2) = Ḡ(s0, �s)

follows from the projected function in

the limit X0 → ∞

lim
X0→∞G(X +

s

2
, X − s

2
) = Ḡ(s0, �s)

Important property of projected func-

tions ⇒ transform of the projection

operator induces X0 dependence

GX0
(p0, �p) =

[
PX0

G∞
]
(p0, �p)

=
∫ ∞
−∞ dp′0PX0

(p0, p′0)G∞(p′0, �p)



Important examples of projected func-

tions are retarded, avanced and Keldysh

component of free propagators

For further analysis analytic proper-

ties in the X0 → ∞ limit of Wigner

transforms of projected functions (WTPF)

are important

We define the following properties cor-

responding to R (A) components:

(1) function of p0 is analytic above

(below) real axis

(2) function goes to zero as |p0| ap-

proaches infinity in the upper (lower)

semiplane



Convolution products of pro-

jected functions

C = A1 ∗ A2 ∗ . . . ∗ An−1 ∗ An

For convolution products of n pro-

jected functions it is important that

at least n − 1 functions satisfy as-

sumptions (1) and (2)

Order is also important: the retarded

functions should be on the right, the

avanced on the left, and the functions

neither avanced nor retarded in the

middle



If these conditions are fulfiled:

CX0
(p0, �p)

=
∫

dp0,1PX0
(p0, p0,1)

n∏
j=1

Aj,∞(p0,1, �p)

⇒ Convolution products of Wigner

transforms of projected functions are

Wigner transforms of projected func-

tions (WTPF)

But propagators and self-energies in

the Schwinger-Dyson equations ap-

pear in different order

⇒ terms that are not WTPF appear

in Schwinger-Dyson equations



Schwinger-Dyson equations

Schwinger-Dyson equations for R, A

and K components of the propagator

GR = GR + iGR ∗ ΣR ∗ GR

GA = GA + iGA ∗ ΣA ∗ GA

GK = GK + iGR ∗ ΣK ∗ GA

+iGK ∗ ΣA ∗ GA + iGR ∗ ΣR ∗ GK



Formal solutions for retarded and ad-

vanced component

GR = GR ∗ (1 − iΣR ∗ GR)−1

GA = GA ∗ (1 − iΣA ∗ GA)−1

R and A components of the resummed

propagator are Wigner tranforms of

projected functions (WTPF)

Keldysh component of the resummed

propagator

GK = GR ∗
(
h(p0, ωp)(G

−1
A − G−1

R )

+iΣK) ∗ GA



Keldysh component of self-energy does

not satisfy assumptions (1) and (2)

One-loop aproximation to ΣK can be

decomposed into parts satisfying (1)

and (2) as retarded and advanced func-

tions

ΣK = −ΣK,R + ΣK,A

But Schwinger-Dyson equation for K

component of the propagator contains

retarded components on the left from

the advanced components

=⇒ stepping out of the space of Wigner

transforms of projected functions (WTPF)



Equal time two-point func-

tions and opservables

To study single-particle opservables:

reduction of two-point functions to

equal time (x0 = y0 = t ⇒ X0 = t,

s0 = 0)

⇒ it is obtained by inverse Wigner

transform

G(t,0, �p) =
1

2π

∫
dp0GX0=t(p0, �p)

Average number of particles with im-

pulse �p is connected to equal time K

component of the propagator

〈2N�p(t) + 1〉 =
ωp

2π

∫
dp0GK,t(p0, �p)



Other single-particle opservables are

generated with the help of 〈N�p(t)〉

For projected functions and bare fields

〈2N�p(t) + 1〉 =
ωp

2π

∫
dp′0GK,∞(p′0, �p)

= 1 + 2f(ωp)

This is completely determined by its

form in the X0 → +∞ limit



Equal time K component of the prop-

agator in the single self-energy inser-

tion aproximation GK = G0
K+G1

K+. . .

〈2N�p(t) + 1〉

= 〈2N0
�p (t) + 1〉 + 〈2N1

�p (t)〉 + . . .

= 1 + 2f(ωp) +
ω

2π

∫
dp0G1

K,X0
(p0, �p)

Time dependence of single-particle

opservables is described by equal time

two-point functions

All terms coming from WTPF are con-

stants in time

⇒ non-WTPF terms generate the time

dependence



Number of photons in QGP

Average photon number with impulse

�p produced in QGP

〈N�p(t)〉 =
dN (t)

d3pd3x
(2π)3

=
ωp

4π

∫
dp0[Dt,K(p0, �p) −D0,K(p0, �p)]

Assumption: initial state (at ti = 0)

contains no photons

⇒ ”prompt” photons leave the medium



Phase space photon number density

dN (t)

d3pd3x
=

〈N�p(t)〉
(2π)3

= − 2

π(2π)3
p

2


∫ ∞

−∞ dp0P
ImΣ̃∞,K,R(p0, �p)

(p2
0 − �p2)2


1 − cos(p0 − p)t +

p − p0

p
sin tp0 sin tp




+2π
1

4p3
sin2 tp

∑
λ=±1

λReΣ̃∞,K,R(λp, �p)






Photon number density with vacuum contri-

bution (dashed line) and photon number den-

sity without vacuum contribution (full line)

vs. photon impulse p at t = 10 fm/c. Pa-

rameter T is equal 0.2 GeV. Quark masses

(u i d) are set equal to zero.
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- photon number density is negative

at small impulse p 	 T (region where

resummation is necessary - HTL)

- at large impuse total photon num-

ber and energy are infinite

This is a consequence of the choice

of initial conditions: initial states are

eigenstates on the Fock space of non-

interacting hamiltonian

⇒ regularization is necessary



Regularization

Problem of initial conditions: in one-

loop aproximation (order α in cou-

pling constant) total energy emited

through photon field is infinite

Without the formal solution, finite re-

sults at the order α can be achieved,

by considering four basic types of QCD

plasma



1. vacuum plasma with intial quark

and antiquark distribution functions

equal to zero (f+ = 0 and f− = 0)

2. quark plasma with f+ 
= 0 and

f− = 0

3. antiquark plasma with f− 
= 0 and

f+ = 0

4. quark-antiquark plasma with

f+ 
= 0and f− 
= 0

For ”bare” initial conditions all four

types of plasma emit infinite amount

of energy at the order α in the cou-

pling constant



Had we prepared ”dressed” initial con-

ditions only quark-antiquark plasma

should emit photons at the order α

in the coupling constant

Quark-antiquark plasma contains other

three types of plasma and reduces on

them as special cases

By substracting these contributions

to average photon number regular-

ized expression is obtained which gives

finite total energy

Nf+,f−,reg(�p, t) = Nf+,f−(�p, t)

−Nf+,0(�p, t) − N0,f−(�p, t) + N0,0(�p, t)



Regularized phase space photon number den-

sity for parameter T = 0.2 GeV and

t = 10 fm/c vs. photon impulse
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- function is positive at small impulse

(p 	 T )

- function falls exponentially at large

impulse

⇒ regularization gives finite total emited

photon energy



Regularized phase space photon number den-

sity for parameter T = 0.3 GeV and

t = 10 fm/c vs. photon impulse
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Photon number density at p = 0.2 GeV/c vs.

time. Parameter T is equal 0.2 GeV.
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vs. time. Parameter T is equal 0.2 GeV.
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