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Plan of the talk:

e Motivation: Extended Higgs-sector of the Standard Model,
Improved approximation schemes to effective meson theories

e The 2PIl-approximation to the effective action (quick review)
The 2PI-Hartree truncation

e General analysis of the renormalisability of the 2PI-Hartree approximation
Examples: the O(/N) model with one and with two N-plets




Increasing role of scalar fields in particle physics
Inflaton, dark matter, quintessence (cosmological acceleration)

Phantom/Shadow fields: not coupled to SM force-fields and fermion-matter,
but could couple to SM-Higgs:
Higgs portal to the phantom world (Patt, Wilczek (2006))

V(pp, @s) = p201 0, + N(@®,)? + 1200 by + A\p(d)p)* — n@LD 0T,

General symmetry breaking pattern: ¢, — v, + Hs, ¢, — v, + H,,
Consequences (weak coupling analysis):
Mixing of standard and phantom fields in mass eigenstates
Invisible Higgs decays

Novel v,, = 0 mechanism for generation of electroweak symmetry breaking
(generalised Coleman-Weinberg phenomenon)

General non-perturbative analysis:
Zs. Szép, A.P., Phys. Lett. B642 (2006) 384
Europhys. Lett. 79 (2007) 51001
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All based on
perturbative weak coupling analysis of the Higgs-shadow world coupling.

Interest of applying non-perturbative approaches
(Dyson-Schwinger, 2PI, large NN, etc.)




Effective meson theories of low energy

Continued interest in applications to the phase diagram of strong matter
see reviews by

Zs. Szép, PoS JHW2005:017,2006

R. Casalbuoni, PoS CPOD2006:001,2006

For refined applications of the linear sigma model see P. Kovacs’s talk

Attempt to apply 2PIl-approximation:

D. Roder, J. Rupert and D.H. Rischke, Phys. Rev. D68 (2003) 016003

D. Roder, J. Rupert and D.H. Rischke, Nucl. Phys. 775 (2006) 127
Quotation prompting this investigation:

"Renormalisation of many-body approximation schemes is non-trivial, but
does not change the results qualitatively. We therefore simply omit the
vacuum contributions to the loop integrals.”

Our results present evidence for:

e Transparent non-perturbative renormalisation scheme exists for
2Pl-approximation truncated at the Hartree level.

e Vacuum contributions produce important quantitative modifications in the
phase diagram.




Quick outline of the 2P| approximation for 1-component real scalar field

1

L(p) = 50u00"p = U(p)

2Pl-action (Cornwall-dackiw-Tomboulis, 1974):

1

VI0.G1= U(@) +3 [ WG 1)+ [(D7 (0)G(KH) — 1)+ 1a(,G),

D~ (k,¢) = —k*+ U" ()

Equations of motion:
% 1%

Sok) 0 5ak)
Variation with respect to G(k) should reproduce the Dyson-Schwinger
equation for G(k):

G~ (k) = D™ (k) + (k)

Therefore V5(¢, G) is constructed from

(k) = 222G,

5G (k)




Hartree truncation: Only tadpole contribution is retained to the self-energy
Lagrangean density, including a broad class of scalar models:

L = %[(%0@8“0“ + 0, m Oy — (%) abCa0b — (U45) abpTaTb]

1
—3Fup,ca(0a0b0:.0q + TampTemg) — 2H gp cdTaTp004-

Examples:
O(N) model with 1 N-plet:

Fabcd — ﬁ((sab(scd + 5acébd + 5ad5bc)7 Habcd = 0.
O(N) model with 2 N-plets:

FS o= Fh = 225(0ab0ca + 0acOba + daadse), Hapea = 5t570ab0ca-

U(3) x U(3) model for the meson nonet
M =T% o, +1im,),a =0, .., 8:

Fabcd — %(5ab50d + 5acébd + 5ad5bc) + %(dabndncd + dadndnbc + dacndnbd)
Habcd — %5ab5(zd + %(dabndncd + facnfnbd + fbcnfnad)




2P1-Hartree effective potential with renormalised couplings plus counterterms
iIn symmetry breaking o-background

Vewr =U(Gq) + Vg, S] + Vea, 9]

1 1
V[&a, Sab] = —Tr log S_l + = /(k25ab — m%,ab)Sab + Qc?b,cd/
k

9 9 kSab(k)LScd(p)
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U(Oa) — 5,“]{,@1)0-@0-1) + §Qab,cd0-a0-bo-co-d7 mab,R — :uR,a,b + 4Qab,cd0-00-d

Vetlg, S| = 0U () + —%/5m265ab+5Qabjcd/5ab(k)/50d(p)
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Note the compact notation!

2 - A
oU = (5,&213 + ngab,cdacad> 0a0b, 5m3b — 5#31; + 45Qab,cd505d

Sab = {(0a00), {TaTb) }, N?Lb = {(N?S*)abv (N?D)ab}a

11 22 12 AN21 L
abed — abcd — Fabcda abcd — abed — Hade'

Three different 4-point counterterms are allowed to be introduced: 60, 50, 60!




The propagator (gap) equations
Variation with respect to S.q(k):
Sea (k) = k*dca — mp g — 0mZy + 4QL, g + 6Qabea) [, San(p)
The self-energy matrix is momentum-independent: S‘b1 = k25ab — M2,
Mz =m% g+ omZ; — 4(Q%cq + 0Qabea) f Sab(p

The resulting mass matrix is diagonalised by an orthogonal matrix O,;:

~ 1
M55 = Ocim2R7chdj‘|’Oci5mngdj_4Oci0dj(QaRb,cd+5Qab,cd)OalObl/k2 VR
ko I
Separation of the divergent piece of the tadpole integral:
/ " = T(MP) = Tuso(MP) + Te(MP),  Tain(MP) = 4 M{Bp
L k2% — Ml2 7 672

(Bp = log(eA?/M§3)/1672).




Renormalisation of the propagator (gap) equations I.

The renormalised matrix gap equation (finite parts of the above):
M76ij = Ocim® cqOdj — 40i04iQ caOat O Tr(M).

Condition for the vanishing of the divergent pieces after the substitution of 1/
into the coeficient of the logarithmically divergent piece from the renormalised
equation:

A2
1672

0=0dm?2; — (Qab el ) ( Oab + m2R,abBD>

+16(Qab cdl T 5Qab,cd)Q§fabOelOflTF(MzQ)BD — 40Qe£,cd0c1O 1/ Tr (M)

Vanishing of the overall divergency (independent of T») and of the
subdivergencies (the coefficients of each T (M ?)):

0= 5mgd - 4( abed T 0Qab,cd) ( 25ab + m%{,abBD)

0= 4BD(Qab cd + 5Qab,cd)Qef ab 5Q€f cd-




Renormalisation of the propagator (gap) equations |l.

The overall divergency is split into background independent and background
dependent pieces

A2

Opzg = HQL cq+ 0Qap,ca) (W

Oab + MQR,abBD> )

5chef5-€5-f — 4BD(Q§b,cd + 5Qab>Cd)Q5bbef5-€5-f
The background dependent condition is equivalent to the previous condition if

5chef565f — 5ch€f5-€5-f

Compatibility with the equation of state

0 =0y (Nib,R + 5 gb,cd + 0Qab,cd)Te0d — 4QE i+ 6Qabed) Jy, Sea + 5#319)

The condition for the vanishing of the divergent piece remaining in the
difference of the equation of state with the gap equation multiplied by 4:

(%5Qabcd - 5Qabcd> op0.04 = 0.




Example I: O(N) model with single N-plet

Two counterterm coupling is needed for solving the matrix equation of
subdivergence cancellation:

1
0L qbed = m[5)\A5ab5cd + 0AB(0acObd + dadlbe)]

Equations for the coefficents:

A
SAa = 6_NBD[(N + DA+ (N + 2)6M4 + 26A5],

A
g = B—NBD[)\ + 5)\3]

Parametrisation of the potential energy counterterm:

. S
5Fabcd — —(5ab5bc + 5acébd + 5ad5bc)

leads to

O\ =30X4 + 2005




Remarks:

1. The equations for )\ 4, 6 A coincide with those which can be derived with
the method of iterative renormalisation (Blaizot, lancu, Reinosa, 2004) where
one looks for the self-energy in form of infinite series:

Z % (k),  0Aa= Z AP, ap=) ol

and solves the gap equations iteratavely.

2. When N — >

2
OAp = 2 Bp

1
: Mg ~ O(1/N

which leads to a unique quartic counter coupling 5\ = §X 4 and reproduces
the exact result of the leading order large N analysis.




Example Il: O(N) model with 2 interacting IV-plets

The gap equations for the mass matrix of the ¢ and = fields:

Mé,cd = m%R,cd - 4(F b.cd T 0Fup cd) / Sab — 4(H£cd + 0 Haped) / Py + 5m?5‘,cd>

M]%,cd = m%DR,cd — 4(F bed T 0 Fab cd) /Pab — 4(H£cd + 6 Haped) / Sab+ 5m%3,cd
Subdivergence cancellation:
4Bp(Fy b.cd T 0Fab Cd)Fef o +4Bp(H b.cd T 0Hap cd)Hgf,ab = 0Fef,cd;

4BD(FC{:§,CCZ + 5Fab>Cd)H£C,ab + 4BD(H b,cd + 5Hab Cd)Fef ab — 5H€f cd
Parametrisation of the counter-coupling matrices:

R
AN

5Fab,cd

oL 40ab0cd + 5)\3(5a05l)d + 0 d5bc)]

- \WH
5Hab,cd 12N5)\ 5ab50d




Example Il: O(N) model with 2 interacting IV-plets

2 A A
oML = 4Bp (24N(5N+4)+24N( + 2)60% + 6(5)\ ,
A
SN = SBD—24N()\ + 05,
oA = 4B : (N +2) + L(N(SAF + 200 E) + L(N +2)0AH
P\ 12N 24N & B) T 94N |
Large NV limit:
2 A
SNy (1 — %BD) — 5AH?BD = %BD,

A A A2
_5A£EBD + o\ (1 — EBD> = EBD




CONCLUSIONS (work to be done)

e Analysis of the U(3) x U(3) meson model
e Possible generalisation to any NV and invetigaion of the N — oo limit

e Solution of the renormalised gap equations for N = 3 and the quantitative
comparison of the effect of the vacuum fluctuations on its thermodynamics.

e Going beyond the Hartree-approximation




