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Particle physics: phase transition of strongly interacting
matter

e order of the phase transition as a function of quark
masses chemical potentials

e shape of the transition line, location (?) of CEP

e interplay between chiral and Uxs(1) symmetry
restoration

e change of meson properties (mass, width) across the
transition

e soft mode(s) at CEP
— scalar density fluctuation and/or
— sigma mode

e nonequilibrium dynamics near TCP/CEP
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Relevance for heavy ion collisions

Consistently resummed quantum field theoretical equations are required to
understand

e the thermalization of the QGP

e properties of the quark-gluon plasma in terms of transport coefficients
(conductivity, viscosity)

e propagation of heavy quarks in the plasma

e changes in the meson properties above T,



Properties of the o pole at finite temperature

change in the ground state

IS reflected upon the properties of o

— indicative of the degree of chiral symmetry breaking

m, decreases during chiral sym
— chance to see 0 asasharpr

metry restoration — phase space of o — 27 decay squeezes
esonance Hatsuda & Kunihiro PRL55:158

o pole trajectory (LO large N)

. — Re 'pO/fnfor the complex solution
— solutions on the real axis of the 2"% sheet
- — solution on the real axis of the 1% sheet

2m (T,

T** ~ 0.69m,(0) = 96.6 MeV
real part of the pole goes below the threshold

T ~ 1.07m,(0): sigma becomes stable

decay width vanishes at T\, € (T, T")
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—, suppression of the ¢ — 27 decay channel

T/m(0) PSzSz PRD66:116004

e QCD in the composite operator formalism: T** = 0.95T,. ~ 98 MeV

Barducci et al., PRD59:114024 (T # 0); PRD59:114024 (p # 0)

Does the scenario changes at NLO ?
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fermions treated perturbatively at one-loop order but an infinite subset of

diagrams contribute at O(1/v/N) = resummation is needed



Phase boundary with one-loop parametrization of the LoM

estimate for m,, = mg: mS € (90, 130) MeV

location of TCP: m%“? € (1700, 1850)MeV = m, = (13 — 15)
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message: the scaling region of TCP sets in far away from the physical point

close to the m,, 4 = 0 axis



to test the result a self-consistent approximation (Dyson-Schwinger, 2PI) would
be useful

ambition: study of the phase boundary along the diagonal of the m,, 4 — ms-plane
using SU(N) x SU(N) linear sigma model in the large N approximation

challenge since 1981
footnote in A. J. Paterson, Nucl. Phys. B 190, (1981), 188-204-
“This result indicates that between 2 and 4 dimensions, the onset of symmetry

breaking crosses over from first to second order in the SU (n)x SU (n) o models

a»

“It would be interesting to further study both the linear and non-linear SU(n) x SU(n) o models in the
n — oo limit" Unfortunately, this limit does not appear to yield a tractable calculation for either model at present.



Derivation of Dyson-Schwinger equations

technically the functional integral of a functional derivative vanishes
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physically infinite set of integro-differential equations for Green-functions

Generating equation:
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Derivation of Ward identities
technically generator-functional invariant under infinitesimal symmetry transf.

the classical action is invariant under symmetry transformations
Pi(x) — Pi(x) + iwats; Pj(x)

the measure of the functional integral invariant under orthogonal transformations
0=06Z[J] = / DP / Az J; (2 )t (x)e 5t d'z @y () J(@)]

physically manifestation of classical symmetries at quantum level
—> provides relations between different n-point functions
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O(N) model: Z/ T ( t) @ () = 0

(") m = SamObn — Oemdan generators of the rotation in a plain
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acting with and taking the result at the minimum — ®,,(z) = vV N,

U\/NFWWJ(07P7 _p) — ZGgl(p) o zG;l(p)




Large-N approach to the O(IN) model
£=Loa00m0 — Ln2@n2 + A (@028 + VNHS
2 2 24N
large-N expansion makes strongly self-coupled theory tractable

coupling rescaled such as
— energy density be proportional to the number of d.o.f. per site ~ N
— mass stays finite ~ NV,

external field i determines the pion mass

in the broken symmetry phase: &, - VNvd,+®, c=®¢,m;=P; i=1,..N —1
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The O(N) model at leading order
Master equations for DS formalism

%EIEA] = 5@A ((I)A+GAB5<I) ) A=0or 1
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Equation of state: 51(;—? =—Jo=0 vV N [mQ + 202 + 2 J, G=(p) — %] =0
[ 2 . J— . N
Pion propagator: gw%i]- — zGijl iG-Y(p) = p* — m? — %vQ — %fp Gr(p)

p-independent self-energy = parametrization G (p) = !

2 2
pT —mx

— m? = h/v Goldstone’s theorem



DS equation for the sigma propagator

o A 1AV i
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DS equation for the 3-point function
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The O(N) model at next-to-leading order
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Equation of state
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First task: combine the different diagrams to show the Goldstone’s theorem



Make use of the Ward-identity Go(p) — Gr(p) = ——G4(p)G(p)

to obtain
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Goldstone’s theorem fulfilled by the NLO approximation —iG'(p = 0) =

SEISY

denominators are the result of vertex function resummation

identical equations with the ones obtained in the auxiliary field formalism using
Gauss integration around the saddle point J.O. Andersen et al., PRD70 (2004) 116007



Renormalization of Resummed QFT

Resummation is needed

e when there is rearrangement in the ground state and spectrum
(SSB, phase transition)

T' compensates for the power of coupling spoiling the usual loop expansion
thermal mass — daisy resummation
e when large N techniques are used
infinitely many diagrams contribute at the same order of the 1/N expansion
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e in non-equilibrium context to sum the secular terms

perturbation theory works up to time ~ 1/

direct application of resummation methods obstructed by non-trivial relation to
the order by order renormalization



recently much effort was invested in the study of the renormalization

H. van Hees, J. Knoll, Phys.Rev. D65 (2002) 025010

J.-P. Blaizot, E. lancu, U. Reinosa, Nucl. Phys. A736 (2004) 149

F. Cooper, J. F. Dawson, B. Mihaila, Phys.Rev. D70 (2004) 105008, ibid. D71 (2005) 096003
J. Berges, Sz. Borsanyi, U. Reinosa, J. Serreau, Annals Phys. 320 (2005) 344

key issue: resummation of counterterm diagrams

for 2PI: counterterm diagrams which remove subdivergences are generated by a
Bethe—Salpeter—type equation

it is helpful having not only the equation to be renormalized but also a guiding
diagrammatic expansion of it illustration —



Renormalization of O(N) model at LO
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non-perturbative renormalization
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behind this there is a diagrammatic expansion: supper-daisy resummation



Self-consistent equation \ ; \ ;
for the self-energy [I(m,) = —/ / 5 5
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solved iteratively
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temperature dependent

correct counterterm at n'" perturbative order
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can be obtained with the replacements

A— A+ Y dxand m2 — m? + 207



Separating the vertex function resummation
e G.(p) is the LO propagator — super-daisy diagrams are resummed

o at n™ iteration of the vertex the LO G((;m(p) IS given through the Ward identity
v\/ﬁpwwa(oap7 _p) — ZG(:l(p) _ ZGgl(p)

G5 (p) = Ga(p) = A5G () Gap) [1+31(0) + .. 351" (p)

e consistency for I' .., requires that when its n'th iteration is used

perform a n — 1 iteration in the 4-point vertex function I' ;.
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e because of the two-loop skeleton diagrams start with the first iteration of I' ;...
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Conclusions

the equation of state and the pion propagator obtained at NLO of the large N
approximation to Dyson-Schwinger formalism with elementary (o, ) fields

the two equations are identical with the ones derived using auxiliary field
formalism (o, 7 and composite « fields)

separation of propagator and vertex resummation done using Ward identities

with the iteration of the vertex function the counterterm diagrams are explicitly
constructed

in contrast to the renormalization in the auxiliary field formalism, where there
was no such diagrammatic expansion the renormalization procedure is more
natural not leading to puzzling results

— not only at the minimum of the potential
— no T-dependent divergences
— no bare couplings in the finite equations

concrete finite temperature calculation of the diagrams and their explicit
resummation still to be done



