Skip to main content

Metal-binding biomolecules and health disturbances of freshwater organisms exposed to industrial wastes (METABIOM)

Projekti Hrvatske zaklade za znanost
Project code
Finance value
Start date
Jan 1st 2020
End date
Dec 31st 2023

Metal-binding biomolecules and health disturbances of freshwater organisms exposed to industrial wastes (METABIOM)

Metal-binding biomolecules and health disturbances of freshwater organisms exposed to industrial wastes (METABIOM)

Plant at the Mrežnica River in the vicinity of town Duga Resa.


One of the major problems of aquatic systems in the world is their ever-growing contamination originating from different types of anthropogenic activities, such as industrial production and mining and smelting operations. Among many types of contaminants, metals/metalloids occupy an important place in the environmental studies. The obligation of European countries is to ensure the good quality of their freshwaters in accordance with European Union Water Framework Directive (EU WFD; 2000), with an aim to secure drinking water supply for the population, as well as to protect freshwater biota. To achieve this, it is common to monitor freshwater contamination with metals, i.e. to measure dissolved metal concentrations in the water as more bioavailable fraction compared to total metal concentrations, and to measure metal concentrations in the sediment, as a possible source of dietborne metals for aquatic organisms. Furthermore, it is considered as a standard research approach in the ecotoxicological assessment of metal pollution to determine the metal bioaccumulation, as well as the changes in the responses of biomarkers of metal exposure and effects (e.g. total cytosolic proteins (TP) for general stress, metallothioneins (MT) for metal exposure, total glutathione (tGSH) and catalase (CAT) for anitoxidative capacity, malondialdehyde (MDA) for oxidative damage and acetylcholinesterase (AChE) for exposure to organic contaminants and metals) in the organs of aquatic organisms, as the most effective ways to evaluate potential impacts of metals on aquatic biota. Fish and bivalves are considered as a good choice of bioindicator organisms in such studies, the first one because they are at the top of the aquatic food chain, and therefore mirror the combination of the biotic and abiotic conditions in the particular aquatic environment, and the latter one because they are sedentary organisms and known to accumulate high levels of metals and still survive. In addition, the fish liver and bivalves digestive gland are considered as recommendable target organs for the analyses, since they present the metabolic, detoxification and storage centres of their organisms. However, to obtain more complete insight in the effects of metal contamination and metal bioaccumulation in aquatic organisms, such as fish and bivalves, it is important to gather the information on metal fate in the organs and cells of bioindicators after metal uptake and distribution within their organisms. Many trace elements play important biological roles as integral parts of enzymes or protein structures. And their toxicity is also often postulated to arise from reactions in the cytosol, through nonspecific binding to physiologically important molecules and their consequent inactivation. After entering the organism, metals might be bound by a variety of biomolecules participating in the metabolic functions, storage, detoxification, toxicity mechanisms, or excretion. For many elements, biological functions and mechanisms of toxicity in aquatic organisms are still not thoroughly investigated, and the proteins to which they bind are only partially identified and characterized. A new scientific field has thus recently arisen, named metallomics, and its most important research target is elucidation of the physiological roles and functions of biomolecules binding with metallic ions in the biological systems. Metallomic analyses require sophisticated multidimensional analytical approaches, including separation techniques, such as various techniques of liquid chromatography, an elemental high sensitivity detector, such as HR ICP-MS, and a molecule-specific detector, based on mass spectrometry, for characterization of separated metal-binding biomolecules. Metallomic approaches and strategies should be more frequently used in the environmental studies to elucidate multiple new fish and bivalves metalloproteins, to discover the mechanisms that underlay the metabolic functions and toxic actions of metals, and to eventually identify new biomarkers of metal pollution. Moreover, it has been described in the literature that certain metals can cause various health problems in fish, such as immunosuppression and increased susceptibility to viral and bacterial diseases, skeletal system deformities, neoplasia, osmoregulatory dysfunctions, and pathological changes in the fish liver, which is the reason to more closely study the effects of metal pollution on fish health.

Thus, this project is being proposed for several reasons: 1) from the ecological point of view, because it is important to identify the sources of pollution of freshwater ecosystems and define the strength of their impact; 2) because it is important to define the consequences of the pollution on the aquatic organisms, to ensure the preservation of their biodiversity and health; 3) because it is important to evaluate the risk for the human health through the consummation of freshwater organisms, especially fish; 4) from the aspect of metal pollution, because it is important to define the changes and health disturbances that occur in the aquatic organisms at the certain levels of metal exposure, and to establish metal fate and behaviour in the organisms after their bioaccumulation; 5) because it is important to extend the knowledge on the functions, detoxification mechanisms and toxic effects of metals in fish and bivalves as representative bioindicators, applying state of the art methodological approaches; 6) because it is crucial to identify the metal-binding biomolecules and when possible to use them as biomarkers of exposure and effects of metals.

Other associates

Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals

dr. Dušica Ivanković, senior research associate

dr. Nesrete Krasnići, senior professional associate

dr. Vlatka Filipović Marijić, senior research associate

Tatjana Mijošek, mag. biol. exp., assistant

Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Aquaculture and Pathology of Aquatic Organisms

dr. Damir Valić, research associate

Zvjezdana Šoštarić Vulić, technician

Faculty of Veterinary Medicine, University of Zagreb

dr. Emil Gjurčević, associate professor

dr. Krešimir Matanović, assistant professor

dr. Snježana Kužir, associate professor

Faculty of Science, University of Zagreb

dr. Jasna Lajtner, associate professor

Faculty of Chemistry, University of Oviedo, Oviedo, Spain

dr. Maria Montes-Bayón, full professor

dr. Elisa Blanco González, full professor

Independent external associate

Krešimira Trgovčić, MSc

This site uses cookies.

Some of these cookies are essential, while others help us improve your experience by providing insights into how the site is being used.

For more detailed information on the cookies we use, please check our Privacy Policy.

  • Necessary cookies enable core functionality. The website cannot function properly without these cookies, and can only be disabled by changing your browser preferences.