Ivica Kopriva

Ivica Kopriva

dr. sc.

znanstveni savjetnik
+385 1 457 1286

1842

Radionice 2/102

Zavod LAIR
Institut Ruđer Bošković
Bijenička cesta 54
10000 Zagreb
Hrvatska

Životopis_NZZ_IK.doc 180,50 kB

Obrazovanje

Doktorat tehnički znanosti polje elektrotehnika 1998. godine

Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu

Magistar elektrotehinke 1990. godine

Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu

Diplomirani inženjer elektrotehnike 1987. godine

Vojno-tehnički fakultet u Zagrebu

Područja znanosti

primijenjena matematika i matematičko modeliranje, obradba informacija

Projekti

Znanstveni projekt MZOŠ-a 098-0982903-2558 "Analiza višespektralnih podataka"

Nagrade i priznanja

Nagrada za znanstvene rezultate Instituta Ruđer Bošković 2010. godine

Državna nagrada za znanost 2009. godine za područje tehničkih znanosti

Senior member IEEE 2004. godine

Nastava

"Slijepo razdvajanje signala i analiza nezavisnih komponenata" na doktorskom studiju Fakulteta elektrotehnike i računarstva Sveučilišta u Zagrebu

Istaknute publikacije

T.-M. Huang, V. Kecman, I. Kopriva, "Kernel Based Algorithms for Mining Huge Data Sets: Supervised, Semi-supervised and Unsupervised Learning," Springer Series: Studies in Computational Intelligence, Vol. 17, XVI, ISBN: 3-540-31681-7, 2006.

I. Kopriva, M. Hadžija, M. Popović-Hadžija, M. Korolija, A. Cichocki (2011). Rational Variety Mapping for Contrast-Enhanced Nonlinear Unsupervised Segmentation of Multispectral Images of Unstained Specimen, The American Journal of Pathology, vol. 179, No. 2, pp. 547-553 (IF: 5.224).

I. Kopriva (2010).  Tensor Factorization for model-free space-variant blind deconvolution of the single- and multi-frame multi-spectral Image, Optics Express, vol. 18, No. 17, pp. 17819-17833 (IF 3.278).

I. Kopriva, I. Jerić (2010). Blind separation of analytes in nuclear magnetic resonance spectroscopy and mass spectrometry: sparseness-based robust multicomponent analysis, Analytical Chemistry, vol. 82, pp. 1911-1920 (IF: 5.21).

I. Kopriva, I. Jerić, V. Smrečki (2009). Extraction of multiple pure component 1H and 13C NMR spectra from two mixtures: novel solution obtained by sparse component analysis-based blind decomposition, Analytica Chimica Acta, vol. 653, pp. 143-153 (IF: 3.757).

I. Kopriva, I. Jerić (2009). Multi-component Analysis: Blind Extraction of Pure Components Mass Spectra using Sparse Component Analysis, Journal of Mass Spectrometry, vol. 44, issue 9, pp. 1378-1388 (IF: 2.94).

I. Kopriva, A. Cichocki (2009). Blind Multi-spectral Image Decomposition by 3D Nonnegative Tensor Factorization, Optics Letters vol. 34, No. 14, pp 2210-2212(IF: 3.06).

I. Kopriva (2009). 3D Tensor Factorization Approach to Single-frame Model-free Blind Image Deconvolution," Optics Letters, vol. 34, Issue 18, pp. 2385-2387(IF: 3.06).

I. Kopriva and A. Peršin (2009). Unsupervised decomposition of low-intensity low-dimensional multi-spectral fluorescent images for tumour demarcation, Medical Image Analysis 13, 507-518 (IF: 3.6).

I. Kopriva, (2007). Approach to Blind Image Deconvolution by Multiscale Subband Decomposition and Independent Component Analysis, Journal Optical Society of America A, Vol. 24, No.4, pp. 973-983 (IF: 2.002).

I. Kopriva (2005). Single Frame Multichannel Blind Deconvolution by Non-negative Matrix Factorization with Sparseness Constraint, Optics Letters, Vol. 30, No. 23, pp. 3135-3137 (IF: 3.882).

I.Kopriva, H.H.Szu, A.Persin. (2002). Optical Reticle Trackers with Multi-Source Dicrimination Capability By Using Independent Component Analysis, Optics Communications, Vol. 203 (3-6) pp. 197-211 (IF: 1.488).

I. Kopriva, A. Peršin. (1999). Discrimination of optical sources by use of adaptive blind source separation theory, Applied Optics, Vol. 38, No. 7, pp. 1115-1126 (IF: 1.515).

Članstva u profesionalnim udrugama / društvima

IEEE Senior Member

Optical Society of America, Member

Ova stranica koristi kolačiće

Neki od tih kolačića nužni su za ispravno funkcioniranje stranice, dok se drugi koriste za praćenje korištenja stranice radi poboljšanja korisničkog iskustva.

Za više informacija pogledajte naše uvjete korištenja.

  • Kolačići koji su nužni za ispravno funkcioniranje stranice. Moguće ih je onemogućiti u postavkama preglednika.