Skip to main content

e-Laboratory for Interdisciplinary Collaborative Research in Data Mining and Data-Intensive Sciences

Principal investigator

Project type
Znanstveno-istraživački projekti
European Commission
Start date
Feb 1st 2009
End date
Jan 31st 2012
Total cost
4468853 EUR
More information

The goal of the e-LICO project is to build a virtual laboratory for interdisciplinary collaborative research in data mining and data-intensive sciences. The proposed e-lab will comprise three layers: the e-science and data mining layers will form a generic research environment that can be adapted to different scientific domains by customizing the application layer. The e-science layer, built on an open-source e-science infrastructure developed by one of the partners, will support content creation through collaboration at multiple scales and degrees of commitment---ranging from small, contract-bound teams to voluntary, constraint-free participation in dynamic virtual communities. The data mining layer will be the distinctive core of e-LICO; it will provide comprehensive multimedia (structured records, text, images, signals) data mining tools. Standard tools will be augmented with preprocessing or learning algorithms developed specifically to meet challenges of data-intensive, knowledge rich sciences, such as ultra-high dimensionality or undersampled data. Methodologically sound use of these tools will be ensured by a knowledge-driven data mining assistant, which will rely on a data mining ontology and knowledge base to plan the mining process and propose ranked workflows for a given application problem. Extensive e-lab monitoring facilities will automate the accumulation of experimental meta-data to support replication and comparison of data mining experiments. These meta-data will be used by a meta-miner, which will combine probabilistic reasoning with kernel-based learning from complex structures to incrementally improve the assistants workflow recommendations. e-LICO will be showcased in a systems biology task: biomarker discovery and molecular pathway modelling for diseases affecting the kidney and urinary pathways.

This site uses cookies.. Some of these cookies are essential, while others help us improve your experience by providing insights into how the site is being used. For more detailed information on the cookies we use, please check our Privacy Policy.

Customise settings
  • Necessary cookies enable core functionality. The website cannot function properly without these cookies, and can only be disabled by changing your browser preferences.