Skip to main content

Shape-shifting of vesicles induced by artificial tubular networks (SHINEShift)

Category
H2020
Finance value
187 572,48
EUR
Start date
Jul 1st 2019
End date
Jun 30th 2021
Status
Done
Browse all informations

Starting from the smallest unit of life, the cell, living systems are in constant motion. Cells migrate, divide and differentiate, supported by sophisticated supramolecular machinery, cellular cytoskeleton. In contrast, most artificial supramolecular systems are static. Vesicles are static structures consisting of a lipid bilayer surrounding a fluid. Yet, they are used as the most common artificial models of cell membranes, which are on the contrary dynamic, fluid structures. The SHINEShift project sought to transform vesicles into dynamic structures capable of resisting mechanical stress by employing a photo-responsive synthetic supramolecular tubules as an artificial cytoskeleton inside vesicles. In line with the overall aim, the objectives of the project were to: (i) design and synthesize organic molecules based on cyclic peptides bearing photo-responsive groups, (ii) characterize these molecules and investigate their ability to form tubular structures in a solution, (iii) encapsulate these compounds inside vesicles and (iv) observe their behavior under the influence of light.

MSCA project

SHINEShift project went beyond the state of the art in several ways. It pushed the frontiers in organic synthesis of complex cyclic peptides bearing oligo(ethylene glycol) units whose preparation and purification is not a trivial task. Furthermore, it gave insight into the possibilities of self-assembly of these structures and encapsulation of supramolecular polymers in confined micro-scale compartments – vesicles. This will have a profound effect and open new avenues in the fields of biomimetic systems, materials science and supramolecular chemistry.

This site uses cookies.

Some of these cookies are essential, while others help us improve your experience by providing insights into how the site is being used.

For more detailed information on the cookies we use, please check our Privacy Policy.

  • Necessary cookies enable core functionality. The website cannot function properly without these cookies, and can only be disabled by changing your browser preferences.