Nova metoda računalne patologije za preciznu detekciju granica tumora

Dio zdravog tkiva koji se odstranjuje zajedno s tumorom važan je pokazatelj uspješnosti operacije i petogodišnjeg preživljenja pacijenata. Tijekom zahvata onkološki kirurzi oslanjaju se na brzu, intraoperativnu analizu uzoraka koju provodi patolog. No, zbog čestog prodiranja tumora u okolno tkivo, iznimno je zahtjevno precizno odrediti gdje rezati. Znanstvenici s Instituta Ruđer Bošković (IRB), u suradnji s međunarodnim partnerima i domaćim bolnicama, razvili su metodu računalne patologije koja pomoću posebne vrste snimanja histopatološkoih preparata omogućuje preciznije određivanje granica tumora. Istraživanje je trajalo osma godina, a uspješnost metode su pokazali na primjeru metastaza raka debelog crijeva u jetri.
Tim pod vodstvom dr. sc. Ivice Koprive iz Laboratorija za strojno učenje i reprezentacije znanja IRB-a, u suradnji sa tvrkom Photon etc iz Kanade, patologinjama iz Kliničke bolince Dubrava i Kliničkog bolničkog centra Zagreb, te suradnicima iz Zavoda za molekularnu medicinu IRB-a i Tehničkog Sveučilišta u Minhenu, Njemačka, razvio je metodu računalne analize hiperspektralne slike histopatoloških preparata. Ova metoda omogućuje precizno određivanje granica tumorskog tkiva raka debelog crijeva metastaziranog u jetru. Sustav s više od 96 posto preciznosti razlikuje tumorske od zdravih stanica na razini piksela. Za razliku od uobičajenih metoda umjetne inteligencije, ovaj algoritam treba tek oko 1 posto ručno označenih podataka patologa.